The Norm
Version 4.1

Summary: This document describes the applicable standard (Norm) at 42: a
programming standard that defines a set of rules to follow when writing code. The Norm
applies to all C projects within the Common Core by default, and to any project where
it’s specified.

Contents

I Foreword 2
11 Why? 3
111 The Norm 5
III.1T Naming o o e 5
1.2 Formatting 6
I[II.3 Functions o 8
1.4 Typedef, struct, enum and union 9
II1.5 Headers - ak.ainclude files 10
I11.6 The 42 header - a.k.a start a file with style 11
III.7 Macros and Pre-processors 12
II1.8 Forbidden stuff! 13
1.9 Comments e 14
IMI.10 Files o o o 15
I[M1.11 Makefile 0. o 16

Chapter 1

Foreword

The norminette is a Python and open source code that checks Norm compliance of your
source code. It checks many constraints of the Norm, but not all of them (eg. subjective
constraints). Unless specific local regulations on your campus, the norminette prevails
during evaluations on the controlled items. In the following pages, rules that are not
checked by the norminette are marked with (*), and can lead to project failure (using
the Norm flag) if discovered by the evaluator during a code review.

Its repository is available at https://github.com/42School/norminette.

Pull requests, suggestions and issues are welcome!

Chapter 11
Why?

The Norm has been carefully crafted to fulfill many pedagogical needs. Here are the most
important reasons for all the choices below:

e Sequencing: coding implies splitting a big and complex task into a long series of

elementary instructions. All these instructions will be executed in sequence: one
after another. A beginner that starts creating software needs a simple and clear
architecture for their project, with a full understanding of all individual instructions
and the precise order of execution. Cryptic language syntaxes that do multiple
instructions apparently at the same time are confusing, functions that try to address
multiple tasks mixed in the same portion of code are source of errors.
The Norm asks you to create simple pieces of code, where the unique task of each
piece can be clearly understood and verified, and where the sequence of all the
executed instructions leaves no doubt. That’s why we ask for 25 lines maximum in
functions, also why for, do .. while, or ternaries are forbidden.

e Look and Feel: while exchanging with your friends and workmates during the nor-

mal peer-learning process, and also during the peer-evaluations, you do not want
to spend time to decrypt their code, but directly talk about the logic of the piece
of code.
The Norm asks you to use a specific look and feel, providing instructions for the
naming of the functions and variables, indentation, brace rules, tab and spaces at
many places... . This will allow you to smoothly have a look at other’s codes that
will look familiar, and get directly to the point instead of spending time reading
the code before understanding it. The Norm also comes as a trademark. As part of
the 42 community, you will be able to recognize code written by another 42 student
or alumni when you’ll be in the labor market.

e Long-term vision: making the effort to write understandable code is the best way
to maintain it. Each time that someone else, including you, has to fix a bug or
add a new feature they won’t have to lose their precious time trying to figure out
what it does if previously you did things in the right way. This will avoid situations
where pieces of code stop being maintained just because it is time-consuming, and
that can make the difference when we talk about having a successful product in the
market. The sooner you learn to do so, the better.

e References: you may think that some, or all, the rules included on the Norm are
arbitrary, but we actually thought and read about what to do and how to do it.

The Norm Version 4.1

We highly encourage you to Google why the functions should be short and just do
one thing, why the name of the variables should make sense, why lines shouldn’t
be longer than 80 columns wide, why a function should not take many parameters,
why comments should be useful, etc.

Chapter 111

The Norm

I11.

1 Naming

A structure’s name must start by s_.
A typedef’s name must start by t_.
A union’s name must start by u_.
An enum’s name must start by e_.
A global’s name must start by g_.

Identifiers, like variables, functions names, user defined types, can only contain
lowercases, digits and ’_’ (snake case). No capital letters are allowed.

Files and directories names can only contain lowercases, digits and ’_’ (snake_ case).

Characters that aren’t part of the standard ASCII table are forbidden, except inside
litteral strings and chars.

(*) All identifiers (functions, types, variables, etc.) names should be explicit, or a
mnemonic, should be readable in English, with each word separated by an under-
score. This applies to macros, filenames and directories as well.

Using global variables that are not marked const or static is forbidden and is con-
sidered a norm error, unless the project explicitly allows them.

The file must compile. A file that doesn’t compile isn’t expected to pass the Norm.

The Norm Version 4.1

I11.

2 Formatting

Each function must be at most 25 lines long, not counting the function’s own braces.

Each line must be at most 80 columns wide, comments included. Warning: a tabu-
lation doesn’t count as a single column, but as the number of spaces it represents.

Functions must be separated by an empty line. Comments or preprocessor instruc-
tions can be inserted between functions. At least an empty line must exists.

You must indent your code with 4-char-long tabulations. This is not the same as 4
spaces, we're talking about real tabulations here (ASCII char number 9). Check that
your code editor is correctly configured in order to visually get a proper indentation
that will be validated by the norminette.

Blocks within braces must be indented. Braces are alone on their own line, except
in declaration of struct, enum, union.

An empty line must be empty: no spaces or tabulations.
A line can never end with spaces or tabulations.

You can never have two consecutive empty lines. You can never have two consecu-
tive spaces.

Declarations must be at the beginning of a function.

All variable names must be indented on the same column in their scope. Note:
types are already indented by the containing block.

The asterisks that go with pointers must be stuck to variable names.
One single variable declaration per line.

Declaration and an initialisation cannot be on the same line, except for global
variables (when allowed), static variables, and constants.

In a function, you must place an empty line between variable declarations and the
remaining of the function. No other empty lines are allowed in a function.

Only one instruction or control structure per line is allowed. Eg.: Assignment in
a control structure is forbidden, two or multiple assignments on the same line is
forbidden, a newline is needed at the end of a control structure,

An instruction or control structure can be split into multiple lines when needed.
The following lines created must be indented compared to the first line, natural
spaces will be used to cut the line, and if applies, operators will be at the beginning
of the new line and not at the end of the previous one.

Unless it’s the end of a line, each comma or semi-colon must be followed by a space.
Each operator or operand must be separated by one - and only one - space.

Each C keyword must be followed by a space, except for keywords for types (such
as int, char, float, etc.), as well as sizeof.

6

The Norm Version 4.1

e Control structures (if, while..) must use braces, unless they contain a single in-
struction on a single line.

General example:

g_global;

my_string;
i;
t_struct;

The Norm Version 4.1

I111.3 Functions

e A function can take 4 named parameters at most.

e A function that doesn’t take arguments must be explicitly prototyped with the
word "void" as the argument.

Parameters in functions’ prototypes must be named.

You can’t declare more than 5 variables per function.

e Return of a function has to be between parenthesis, unless the function returns
nothing.
e Each function must have a single tabulation between its return type and its name.

The Norm Version 4.1

II1.4 Typedef, struct, enum and union

As other C keywords, add a space between “struct” and the name when declaring
a struct. Same applies to enum and union.

When declaring a variable of type struct, apply the usual indentation for the name
of the variable. Same applies to enum and union.

Inside the braces of the struct, enum, union, regular indentation rules apply, like
any other blocks.

As other C keywords, add a space after “typedef”, and apply regular indentation
for the new defined name.

You must indent all structures’ names on the same column for their scope.

You cannot declare a structure in a .c file.

The Norm Version 4.1

II1.5 Headers - a.k.a include files

e (*) The allowed elements of a header file are: header inclusions (system or not),
declarations, defines, prototypes and macros.

All includes must be at the beginning of the file.

e You cannot include a C file in a header file or another C file.

e Header files must be protected from double inclusions. If the file is ft_foo.h, its
bystander macro is FT_F0O_H.

e (*) Inclusion of unused headers is forbidden.

e Header inclusion can be justified in the .c file and in the .h file itself using comments.

g_variable;

10

The Norm Version 4.1

II1.6 The 42 header - a.k.a start a file with style

e Every .c and .h file must immediately begin with the standard 42 header: a multi-
line comment with a special format including useful informations. The standard
header is naturally available on computers in clusters for various text editors (emacs:
using C-c¢ C-h, vim using :Stdheader or F1, etc...).

e (*) The 42 header must contain several informations up-to-date, including the cre-
ator with login and student email (@student.campus), the date of creation, the login
and date of the last update. Each time the file is saved on disk, the information
should be automatically updated.

The default standard header may not automatically be configured with
your personnal information. You may need to change it to follow the
previous rule.

11

The Norm Version 4.1

II1.7 Macros and Pre-processors

e (*) Preprocessor constants (or #define) you create must be used only for literal
and constant values.

e (*) All #define created to bypass the norm and/or obfuscate code are forbidden.

e (*)You can use macros available in standard libraries, only if those ones are allowed
in the scope of the given project.

e Multiline macros are forbidden.
e Macro names must be all uppercase.
e You must indent preprocessor directives inside #if, #ifdef or #ifndef blocks.

e Preprocessor instructions are forbidden outside of global scope.

12

The Norm

Version 4.1

I11.8 Forbidden stuff!

e You're not allowed to use:

o for

do...while

O

switch

@)

o case

o goto

e Ternary operators such as ‘7’
e VLAs - Variable Length Arrays.

e Implicit type in variable declarations

(argc,

i;
str[argc];

argc

13

The Norm Version 4.1

II1.9 Comments

e Comments cannot be inside function bodies. Comments must be at the end of a
line, or on their own line

e (*) Your comments should be in English, and useful.

e (*) A comment cannot justify the creation of a carryall or bad function.

A carryall or bad function usually comes with names that are not
explicit such as f1, f2... for the function and a, b, c,.. for
the variables names. A function whose only goal is to avoid the
norm, without a unique logical purpose, is also considered as a
bad function. Please remind that it is desirable to have clear and
readable functions that achieve a clear and simple task each. Avoid

any code obfuscation techniques, such as the one-liner,

14

The Norm

Version 4.1

II1.10 Files

e You cannot include a .c file in a .c file.

e You cannot have more than 5 function-definitions in a .c file.

15

The Norm Version 4.1

I11.

11 Makefile

Makefiles aren’t checked by the norminette, and must be checked during evaluation by
the student when asked by the evaluation guidelines. Unless specific instructions, the
following rules apply to the Makefiles:

The §(NAME), clean, fclean, re and all rules are mandatory. The all rule must be
the default one and executed when typing just make.

If the makefile relinks when not necessary, the project will be considered non-
functional.

In the case of a multibinary project, in addition to the above rules, you must have
a rule for each binary (eg: $(NAME_ 1), $(NAME_2), ...). The “all” rule will
compile all the binaries, using each binary rule.

In the case of a project that calls a function from a non-system library (e.g.: 1ibft)
that exists along your source code, your makefile must compile this library auto-
matically.

All source files needed to compile your project must be explicitly named in your
Makefile. Eg: no “*.c”, no “*.0” , etc ...

16

	Foreword
	Why?
	The Norm
	Naming
	Formatting
	Functions
	Typedef, struct, enum and union
	Headers - a.k.a include files
	The 42 header - a.k.a start a file with style
	Macros and Pre-processors
	Forbidden stuff!
	Comments
	Files
	Makefile

