
three sectors: relational databases, which
account for the lion’s share of size and
growth; older pre-relational databases,
which is a declining maintenance market
focused on IBM mainframes; and object
databases, the newest sector, which has
been slow to develop and was worth less
than $200m in 1998. The relational
model of data was first proposed in 1970.
Its commercial potential was recognised
during the 1980s, and today it is
dominant and ubiquitous to the point
where virtually every modern
data-processing application relies on a
relational data base.

Multimedia first exposed the relational
model’s limitations. Networked PCs and
the Internet have replaced mainframe
systems as the focus of the industry’s
attention, and the role of computers has
expanded from its traditional base of
transaction processing into new areas,
many of which depend on the PC’s

INTRODUCTION
A database management system is a vital
component of every computer. At the
heart of every computer system lies a
vital software component called a
database management system that stores
and manages data. Database management
systems range in scale from the simple
file manager found on every PC to
highly complex systems capable of
storing huge volumes of data and
affording simultaneous access to
thousands of users. According to
Dataquest, $8bn-worth of database
software was sold in 1999, representing
18 per cent growth over the preceding
year. The market leaders are IBM and
Oracle with about 30 per cent of the
market each, while Microsoft has about
10 per cent, and Sybase, Informix and
CA each have 5 per cent or less.

Relational database technology is
dominant today. The market comprises

336 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

The associative model of data
Received: 24th May, 2001

Simon Williams
was founder, Chairman and Chief Executive of Synon Corporation, a worldwide leader in application development technology,
from its foundation in 1984 until 1991. Simon conceived and developed Synon/2, the dominant development environment for
IBM’s AS/400 platform, Obsydian, an award-winning application development tool and Synon/Financials, a successful financial
application package.

Following Synon’s move to the USA in 1990, Simon remained in the UK as Group Chairman and in 1991 left to form
Dysys, a software start-up that built the Obsydian product. In 1992 Synon acquired Dysys and Simon rejoined Synon as
Chief Technology Officer until the end of 1996. In 1998 Synon was acquired by Sterling Software (itself recently acquired by
Computer Associates) in a share swap valuing Synon at $80 million.

Abstract Lazy Software has created the Associative Model of Data,� the first entirely
new database architecture since the advent of the Internet. Its product Sentences� is a
multi-user, web-enabled database management system written in Java, and is the first
commercial implementation of the Associative Model.

Using Sentences, customers can design and develop sophisticated database
applications more quickly and with less technical know-how than has previously been
possible. The high cost of application development has forced many companies to
adopt packaged solutions that are not well tailored to their needs. Sentences brings
custom applications back within their economic reach.

Simon Williams
Lazy Software Ltd, Mercury
Park, Wycombe Lane,
Wooburn Green, Bucks
HP10 0HH, UK.

Tel: 01628 642300; e-mail:
info@lazysoft.com

the object model predates the explosive
growth of the Internet, and, in common
with the relational model, is not well
suited to meet its unique demands.

The market has not embraced
object/relational products. In response to
the perceived threat of object databases,
the established vendors of relational
databases began to incorporate some
features of the object model into their
relational products, creating hybrid
‘object/relational’ databases. Informix was
first with the high-profile launch of its
Universal Server in 1997, but it had
misjudged the market’s readiness to adopt
its new technology, and the introduction
was commercially disastrous — in the
first quarter of 1997 its licence revenue
fell by 50 per cent. Some commentators
argue that object/relational represents the
next major data model. But inspection of
these products reveals that they are
simply relational databases with a few of
the features of the object model grafted
on, and it is difficult to construct an
effective economic case for the adoption
of this technology. The addition of
object features to relational products is
best viewed as a mid-life kicker for the
relational model.

Relational databases have not adapted
to the internet. The Internet places a
new set of demands on database
technology to which relational vendors
have yet to respond. Their flagship
products were developed before the
advent of client/server and the Internet,
and have become feature-rich to the
point of redundancy. By contrast, the
Internet demands compact, lightweight
technologies developed using Java that
can function equally well on PCs,
servers, network computers and the new
generation of pervasive computing
devices that is now emerging. One major
vendor’s Internet strategy requires
companies to store their databases on
large, centralised data servers, an

multimedia capability. While the relational
model is well suited to transaction
processing, it cannot manage the complex
data structures such as image and sound
which are typical of multimedia
applications. Also, the relational model
does not easily support the distribution of
one database across a number of servers,
which is the natural model for the
Internet. Furthermore, new applications
are emerging that are beyond the
relational model’s capability, such as those
dealing with spatial and temporal data,
and with uncertainty and imprecision.

The object model failed to challenge
the relational model’s dominance. The
object model of data evolved during the
1980s as an adjunct to the development
of object-oriented programming
languages, and a new generation of
database products based on the object
model started to reach the market in the
early 1990s. Its proponents argue that the
object model is the natural successor to
the relational model, but sales of object
databases have fallen far short of analysts’
predictions and the market is not
growing. It can be argued that in time
the object model will overcome its
difficulties and supersede the relational
model: after all, the relational model
itself took over ten years to succeed.
There are good reasons why this will not
happen. The object model was not
originally conceived to improve on or
even compete with the relational model,
but was intended simply to provide
persistent storage for object-oriented
programming languages. As a result, in
many respects it is inferior to the
relational model for transaction
processing. Also, while many new
applications demand more granularity
(the ability to deal individually with very
small pieces of data) than the relational
model can provide, the object model
actually supports less granularity than the
relational model, not more. Moreover,

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 337

The associative model of data

challenges faced by early players in the
burgeoning ASP marketplace.

All customers are not the same —
why store the same information about
each one? Relational applications cannot
record a piece of information about an
individual thing that is not relevant to
every other thing of the same type.
Consequently, applications have to store
the same information about every
customer, order, product and so on. This
limits marketers’ ability to continually
improve the quality of customer service,
because applications cannot record and
take account of the needs of individual
customers. The relational model is a
limiting factor in the quest to improve
customer service and competitive edge.

All databases store data — why can
they not work together more easily?
Information about identical things in the
real world is structured differently in
every relational database, so it is difficult
and expensive to amalgamate two
databases. The cost of integrating systems
is now a major impediment to mergers
and acquisitions. Extracting useful
information from across several databases
demands expensive data warehousing and
mining projects.

Using the associative model
It is no longer necessary to write every
new application from scratch. The same
set of programs can be used to
implement many different associative
applications without being altered or
rewritten in any way, allowing users to
create new applications from existing
ones. The saving in software
development costs afforded by this
capability will be substantial.

Applications can be tailored for
individual users. Associative applications
can permit features to be used or ignored
selectively by individual users without
the need for parameterisation or

approach which is at odds with the
distributed nature of the Internet. This
defensive strategy is shaped more by the
limitations of technology that the needs
of customers, and highlights the relational
model’s inability to respond to the
demands of the Internet.

The associative model overcomes key
limitations of the relational model. The
most visible limitation of the relational
model has been its inability to handle
complex data, but the market’s verdict is
that the importance of this has been
exaggerated. Looking beyond complex
data, the relational model has some far
more significant limitations that the
market has not yet challenged, and that
are overcome by the associative model.

Using the relational model
Brains do not need new thought
processes to think about new things —
why do computers? Every new relational
application needs a new set of programs
developed from scratch, because a
program written to use one set of tables
cannot be reused with a different set.
This creates a need for a never-ending
supply of new programs, the
development and maintenance of which
is labour-intensive, expensive and
wasteful. As long as marketers continue
to rely on the relational model,
application software will be far more
costly than it needs to be.

Users do not all need the same
functions — why is customisation so
difficult? Relational applications offered
by ASPs (Application Service Providers)
and package vendors can only be tailored
to the needs of large numbers of
individual users through complex
parameterisation or through customisation
which renders subsequent upgrades more
difficult. Finding a way to support the
customisation of applications for
individual users is one of the main

338 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

arrival in the early 1960s prompted a
flurry of research into how information
could best be represented and stored in a
computer. The various solutions that
were proposed were called ‘models’.

To date, five models of data have been
developed and exploited commercially.
The network, hierarchical and relational
models emerged between 1965 and 1970.
The relational model won the largest
market share and became the standard, at
the expense of the other two. The object
model emerged in 1990, and the hybrid
object/relational model followed in 1996
as an attempt to unify the object and
relational models, but neither have
seriously challenged the dominance of the
relational model, which represents over
95 per cent of the market. A brief
summary of the relational, object and
object/relational models follows.

THE RELATIONAL MODEL

Tables, rows and columns
The relational model was described by
Dr Edgar Codd of IBM’s San Jose
Research Laboratory in his 1970 paper
‘A relational model of data for large
shared data banks’. The relational model
stores data in tables. Each table holds
data about one particular type of thing:
customers, products, orders, employees
and so on. Within a table, each row
represents one instance of the type of
things that the tables stores — one
customer, one product and so on — and
each column represents a piece of
information that is stored about every
customer, product and so on. Thus a
customer table might have columns for
customer number, name, telephone
number, credit limit, outstanding balance
and so on. Simple examples of customers
and orders are shown in Tables 1 and 2.

Within each table, rows are uniquely
identified by one or more special

customisation. Data sets can be similarly
partitioned with precise granularity, to be
visible or invisible to individual users.
This approach is ideally suited to the
needs of ASPs and application package
vendors alike.

The information needed about each
customer can be stored precisely. An
associative database can record
information that is relevant only to one
thing of a particular type, without
demanding that it be relevant to all other
things of the same type. With this
capability, we can continue to enhance
the quality of customer service and hone
competitive edge.

Databases can be integrated without
extra programming or data warehousing
tools. Separate associative databases can
be readily correlated or merged without
extra programming, and multiple
databases distributed across many servers
can be accessed by applications as though
they were a single database. These
capabilities significantly reduce the cost
of amalgamating databases, and allow
information to be readily extracted from
across multiple databases without the
need for data warehousing.

DATABASES SO FAR
Databases were made possible by
magnetic disk storage. Computers did
not always have database management
systems: early computers stored their data
on punched cards, paper tape or
magnetic tape. In order to retrieve some
data from part of the way through a
deck of cards or a reel of tape, the
computer had to read past the
intervening data first, rather like
fast-forwarding a videotape to find a
particular scene. By contrast, magnetic
disc storage enabled the computer to
retrieve any piece of stored data almost
instantaneously, rather like selecting a
particular track from an audio CD. Its

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 339

The associative model of data

application needs a new set of programs
written from scratch, because a program
written for one application cannot be
reused for another. This creates a need for
a never-ending supply of new programs,
the development of which is
labour-intensive, time-consuming and
expensive. Why is this so?

Programs are designed around tables.
Under the relational model, every table
is structured differently — that is, it has
different columns and column headings
— and the programs are designed around
the tables. It is impossible to write an
efficient program that is capable of
accessing a table whose structure is not
known when the program is written, just
as it is impossible to make a key that
will open any lock. Every program has
to be written by someone with precise
knowledge of the tables that it will use,
and a program that uses one set of tables
cannot be used with a different set. In
commercial applications, each entity type
— customers, products, orders and so on
— is represented by at least one table,
and most applications involve between
50 and 500 entity types, so each new
application needs somewhere between
500 and 5,000 new programs to be

columns called primary keys, shown in
bold. The relationship between an order
and the customer who placed it is
recorded by putting the customer’s
number into the ‘customer number’
column of the order. This is an example
of a foreign key. Foreign keys are
generally shaded but are shown unshaded
in these tables.

The meaning of ‘relational’
Many people who hear the term
‘relational’ for the first time assume that it
derives from relationships between the
things stored in the database. In fact, it
comes from the mathematical concept of
a ‘relation’: ‘Given sets S1, S2, . . ., Sn, R
is a relation on these n sets if it is a set of
n-tuples, the first component of which is
drawn from S1, the second component
from S2, and so on’. The proper term for
the tables described here is ‘relations’.

Why must new programs be written
for every application?
Brains do not need new thought processes
to think about new things — why do
computers? Every new relational database

340 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

Table 1: Customers

Customer
number Name

Telephone
number

Credit
limit

Outstanding
balance

456
567
678
789

Avis
Boeing
CA
Dell

020 7123 4567
020 8345 6789
0123 45678
0134 56789

£10,000
£2,500

£50,000
£21,000

£4,567
£1,098

£14,567
£6,789

Table 2: Orders

Order
number Date

Customer
number Item Quantity

11234
11235
11236
11237

2-Mar-99
15-Mar-99
21-Apr-99
7-May-99

567
789
789
456

ABC345
GGI765
KLM012
GHJ999

150
25

1,000
50

application checks a set of parameter
values as it executes to determine
precisely how its code should behave.
This approach has drawbacks arising
from the exponential increase in
complexity as new options are added
over time. The code itself becomes
extremely complex: different pieces of
business logic need to check different
parameters to determine whether they
are invoked, and as the number of
options increases, new functions are
more difficult to add, and testing the full
range of configurations created by
different combinations of parameters
becomes more difficult. Also, deploying
the package becomes very costly for
customers. The lion’s share of the cost of
installing a sophisticated package goes on
the specialist assistance needed to
implement it. A major component of
this is the time and know-how involved
in setting up the package to achieve the
desired behaviour.

Modified packages are difficult to
upgrade to new releases. Users who
require functionality not provided by the
core package must modify their copy to
create the behaviour that they require.
This greatly increases the difficulty of
upgrading to new versions of the
package provided by the vendor, which
often contain important new
functionality that the customer would
wish to exploit. A small industry of
source code comparison, configuration
management and impact analysis skills
and tools exists to cater for precisely this
need, but even so, typically fewer than
50 per cent of major application package
users implement new releases for this
reason.

The ASP model adds a new
dimension to the problem. The advent
of the ASP model adds a new dimension
to the equation. When each customer
has their own version of the package
installed on their own computer, the

written from scratch. Even using modern
4GLs (and development tools), a
non-trivial program can still take days or
weeks to develop.

Most programs are hand-coded from
scratch. One of the stated goals of
object-oriented programming was the
re-use of program code. Some 20 years
after the first object-oriented languages
were developed, however, almost no true
re-use has been achieved. Some
development tools automate the process
of writing programs by re-using program
designs, but such tools demand higher
levels of skill and training and thus
greater up-front investment than
traditional programming techniques, so
despite their impressive productivity
levels their use is not widespread. Most
programs developed today are still
hand-coded from scratch in a highly
labour-intensive manner. Re-use has
failed not because programming
languages and tools are deficient or
because programmers are not clever
enough, but simply because data are not
stored in a way that permits it.

Why is it expensive to customise
applications for individual users?
Not all users need the same functionality.
The cost of software development has
led more and more companies to depend
on packaged applications and,
increasingly, on Application Service
Providers (ASPs). ASPs host applications
and data on their own servers, which are
accessed by their customers via the
Internet. Both package vendors and ASPs
face the same challenge: how to provide
the richness of functionality required by
sophisticated users without overwhelming
those with more prosaic needs.

Parameterisation fuels complexity.
Historically, the behaviour of each
installation of an application package has
been determined by parameterisation: the

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 341

The associative model of data

Every column of every row must be
occupied. The relational model dictates
that every row must have a value in
every column. If the value is unknown,
the column must contain a special mark
called a ‘null’. For a relation to store a
piece of information that relates to only
one row, an entire column in every
single row would be have to be set aside
to cater for it, and the empty column in
every other row would have to contain a
null. In commercial applications, it is not
unusual for a relation to contain many
thousands or even millions of rows. If a
customer table contained 10,000
customers, setting aside a column to
record a piece of information unique to
one customer would entail storing 9,999
nulls. To store information unique to just
10 per cent of customers would add
1,000 columns to the table, and entail
storing almost 10m nulls. The overhead
of storage space and processing time to
do this renders it impractical.

Only a programmer can change what
information is stored. Nor do the
problems end there. Even if a marketer
decided to accept this overhead in the
interests of customer service, there is
another issue. If a salesperson needs to
record a new piece of information, they
cannot simply add the new information
to the customer’s record on the spot. A
programmer needs to amend the table’s
definition, and then change every
program in the system that needs to use
the new piece of information. Again, this
is clearly impractical.

‘Market of one’ is tough to implement
using the relational model. Customer
relationship management, and the
build-to-order approach known as ‘mass
customisation’ or ‘market of one’, are
hot issues. To implement these
techniques properly, companies will need
computer systems that can recognise
customers’ individual needs. At a time
when investment is shifting from back

problem is confined to making one
isolated installation of a package behave
in one particular way. But the ASP must
host the package for every one of its
customers. If an ASP has, say, 10,000
customers using a package, does this
mean it may find itself hosting up to ten
thousand copies of the package as each
customer demands their own
configuration? If this, or anything
approaching it, turns out to be the case,
then the set-up and management costs
alone would rapidly overturn the pricing
assumptions that make the ASP model
viable.

Applications can’t be tailored to suit
individual users. Parameterisation and
customisation is a viable route, albeit
expensive and cumbersome, for package
installations where all users are required
to use the same functionality, but what if
there is a business need to tailor the
behaviour of the application for an
individual user? For example, many
salespeople have their own ways of
getting closer to their key customers:
some wine and dine, some remember
family details, some play sports.
Nevertheless, the cost of recording
customers’ favourite cuisines, children’s
birthdays or golf handicaps in a
company’s enterprise database is unlikely
to be deemed acceptable.

Why must the same information
about every customer be stored?
The relational model cannot record or
process a piece of information about an
individual customer which is not relevant
to every other customer, so the same
information is stored about every
customer. This limits companies’ ability
to improve continually the quality of
their customer service, because systems
cannot record and take account of the
needs of individual customers. Why does
such a fundamental restriction exist?

342 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

ones. All this work deals with just one
column in one pair of matching tables,
but the nature of the relational database
design process means that many of the
tables in one database will have no direct
equivalent in the other, so the process
just described will often be the tip of the
iceberg. Even when marketers stop short
of merging databases — perhaps only a
simple question needs answering, such as
how many customers the two subsidiaries
share in common — marketers have to
go through this cross-referencing exercise
before they can begin to find the answer
to the question.

Distributed database capabilities do not
solve the problem. Most database
management systems incorporate facilities
to distribute databases across many
computers. They can put some tables on
one computer and others on another, or
some rows of a table on one computer
and others on another, or some columns
of a table on one computer and others
on another. The distributed database can
be administered either as one database
stored on many computers, or as
separate, unconnected databases. But this
does not help overcome the problems. If
the network is administered as one
database, no benefit is gained in return
for the overhead other than some leeway
in resource utilisation. If it is
administered as separate databases, the
marketer is right back where they
started. Distributed database capabilities
typically solve only tactical problems,
such as allowing one database to access a
table that already exists in another. These
limitations have forced at least one major
database vendor to base their Internet
strategy on centralised data servers.

Data warehousing is expensive and
information is not always current. It is
issues like these that have spawned the
data warehousing industry, which
provides tools and techniques that extract
information from many databases and

office to customer-facing systems, the
relational model is limiting marketers’
ability to improve customer service
further by insisting that systems record
the same type of information about every
customer.

Why is it so difficult to combine and
correlate databases?
Functionally similar relational databases
are always different. Suppose two systems
analysts separately designed two databases
to solve the same problem. The two
databases would differ in many ways.
They would contain different tables with
different names, and even tables that did
the same job would have different
columns with different names in a
different order. Next, suppose that the
two databases were allowed to operate
independently for several years —
perhaps in two subsidiaries of a
multinational — and then it was decided
to amalgamate the subsidiaries and
combine the databases. What would be
involved?

It is impractical to merge tables from
two databases. The simplest case involves
two tables that perform the same
function: such as the two customer
tables. The rows cannot simply be added
from one customer table to the other,
because every row in a relation must
have the same columns, and inevitably
there will be at least one pair of columns
that do not match. So both tables have
to be examined and the corresponding
columns matched up. Even when
columns whose functions match are
found, often they will contain different
types of data: one designer may have
chosen to identify customers by a
number, and the other by a code using
both letters and numbers. One must be
chosen, new values assigned to the other,
and then trawled the entire database
through replacing old values with new

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 343

The associative model of data

storage for program variables. The object
model of data was originally developed
to provide persistent storage for CAD
programs written using object-oriented
programming languages. While an
object-oriented program is running, all of
its variables (that is, the data items that it
is using at a particular point in time) are
stored in main memory in the custody of
objects. When the program ends, main
memory is cleared and the objects are
lost. Persistence is the capability that
allows the objects to be stored on disk
before the program ends, so that when
the program is re-started, it can re-load
its objects from disk and carry on exactly
where it had left off.

A whiteboard is not persistent storage.
A conference room whiteboard provides
a good analogy for persistence. The
content of a whiteboard is not persistent,
because the next group of people to use
the conference room will probably clean
the whiteboard and write on it
themselves. So if someone wants to keep
a permanent record of anything written
on the board during a meeting, they
must copy it onto paper before leaving
the conference room at the end of the
meeting. Object databases were
developed to be like the paper onto
which the whiteboard’s contents are
written.

Object orientation came to be seen as
a silver bullet. Object orientation was
advocated with almost religious fervour
as the solution to a wide variety of
problems, ranging from a better way to
write programs to a better way to
re-engineer business processes. (Is a
model that requires individuals and
departments to hide their own
information from all-comers and respond
only to a limited and precisely-defined
set of inputs really a good blueprint for
modern business?) By 1990, the object
model of data had come to be seen as a
serious challenger to the relational model.

gather it together into a single,
cross-referenced central database that can
be used for query and analysis. But a
data warehouse is costly to set up and
maintain, in terms of specialised skills,
software tools and extra hardware to
duplicate the data. Also the process can
be time consuming, sometimes resulting
in information that does not reflect the
most recent trends.

THE OBJECT MODEL
Object orientation is a better way to
write programs. Object orientation
evolved during the 1980s as a better way
of programming, superseding the
prevailing philosophy of structured
programming. In object-oriented
programming languages, each piece of
data in a computer is kept in the custody
of an object, and cannot be directly
accessed at all. Any program that needs
to read or alter a piece of data must do
so by sending a message to the custodian
object, asking it to effect the desired
operation by invoking one of its
methods. Each method represents a
process that an object can perform on its
data. The data items that an object has
custody of, and the methods that it
responds to, are determined by the
object’s class. Every object belongs to, or
to use the proper language, ‘is an
instance of’ a class, and each class may
have many member objects.

Bank accounts are object-oriented. A
bank account is a good analogy for an
object. A bank customer cannot change
anything about their bank account
directly: instead they send it messages in
the form of cheques, deposits, balance
inquiries and so on. A bank account’s
methods are ‘pay a cheque’, ‘receive a
deposit’, ‘produce a statement’ and so
on. A particular bank account is an
instance of the class ‘bank account’.

Object databases provide persistent

344 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

Consequently, in many respects the
object model is inferior to the relational
model for transaction processing, most
notably in view mechanisms and query
processing.

Many basic object orientation (OO)
concepts are not relevant to transaction
processing. The original proponents of
object orientation came from scientific
and engineering disciplines rather than
commercial data processing, and had had
little exposure to the needs of transaction
processing systems where relational
databases excel today. Object orientation
is first and foremost a better way to
write programs. In the context of
transaction processing, object databases
are burdened with some irrelevant
concepts. One such is encapsulation,
whereby each data item is in the
protective custody of an object and may
be changed only by submitting a
procedural request to that object. This is
a good way to ensure the integrity of
variables in a multitasking environment,
but it is irrelevant to a general ledger
table containing several million rows of
data, and it makes the process of
querying data more cumbersome and
inefficient than it need otherwise be.

More granularity, not less is needed.
Features such as encapsulation mean that,
in an object database, there is a
processing overhead associated with
storing every object, regardless of its size.
So, in practice, object databases store
small numbers of large objects more
efficiently than large numbers of small
ones. This means that they promote less
granularity than relational databases, not
more. To improve, however, on the
relational model in areas such as schema
flexibility, querying, meta-data
management, versioning, temporal and
spatial data management, and
long-duration transactions, more
granularity is needed, not less.

The object model is too heavy for the

Industry commentators were quick to
endorse the new contender, and big
things were forecast for it, at the expense
of relational technology. Some
commentators still believe that, in time,
the object model of data will supersede
the relational model. The author
disagrees. Here are the reasons.

Object databases have fallen far short
of commercial expectations. When the
object database market first emerged in
1990, it was expected to grow rapidly. In
1991, Ovum wrote ‘DBMS that support
objects will account for revenues of $4.2
billion in 1995 . . . (and) object-oriented
DBMS will earn revenues of $560
million in 1995’. In fact, Informix, the
relational database vendor who has been
most aggressive in supporting objects, has
been severely rebuffed by the market,
and object-oriented databases in 1995
achieved revenues of only $115m, about
one fifth of Ovum’s forecast. Early
predictions for object databases assumed
that they would win market share on
two fronts: from their relational
counterparts as the technology for storing
transactional data, and from file systems
such as Netware and DOS/Windows as
the technology for storing multimedia
data. In practice, neither has happened.
For transactional data, vendors have held
users’ attention with developments such
as data warehousing and data mining,
while object databases continue to suffer
from the perception of poor
performance. For multimedia, few users
have yet outgrown the capabilities of
existing file systems to the point where
an alternative solution is essential.

The object model was not conceived
as a replacement for the relational model.
The object model of data was not
originally conceived to improve on or
even compete with the relational model
on its home turf, but was intended
simply to provide persistent storage for
object-oriented programming languages.

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 345

The associative model of data

think will satisfy their customers’ desire
for things to be object-oriented, and
repackaged the products as so-called
Universal Servers. These products are
described as object/relational, and some
commentators argue that this represents
the next major data model. But
inspection of these products reveals that
they are still relational databases at heart,
with a few of the features of the object
model grafted on.

Some authors have addressed the
concept more seriously. Several
authorities have attempted to be more
rigorous in their definitions. In
‘Object-relational databases: The next
great wave’, Michael Stonebraker,
founder of database vendors Ingres (now
part of Computer Associates) and Illustra,
defines object/relational databases as
those which support a dialect of SQL/3,
and adds ‘They are relational in nature
because they support SQL; they are
object-oriented in nature because they
support complex data’. This definition
has the virtue of being succinct:
however, one suspects it would not meet
with the approval of veteran relational
advocates Chris Date and Hugh Darwen,
who in 1998 presented the first formal
specification of the object/relational
model in their book ‘Foundation for
object/relational databases: The third
manifesto’.

Date and Darwen are not convincing
about the object side of the alliance.
Date and Darwen reassert the continued
relevance of the relational model, which
they restate and, within limits, redefine.
They propose to replace SQL by a more
truly relational language, to replace the
ill-defined concept of a domain with
their well-defined concept of a scalar
type, to rewrite the relational algebra,
and to introduce type inheritance.
Despite their assurance that they are
interested in the applicability of object
concepts to database management, one

Internet and too complex for developers.
Like the relational model, the object
model was conceived before the
explosive growth of the Internet. The
Internet favours lightweight technologies
whose components can be distributed
across the Internet itself and embedded
in browsers and websites. In trying to
adapt itself, and at the same time keep
pace with Microsoft and compete with
the relational model, object technology
has become complex and heavy. As well
as rendering it unsuitable for the
Internet, this complexity has also
hindered its acceptance. For many
developers and technical decision-makers
today, object technology is now too
difficult to use.

Many object databases lack essential
database capabilities. Many object
databases are not yet fully mature as
database management systems, lacking
essential features such as SQL support,
authorisation and access control,
performance tuning, and interfaces to
transaction monitors and other databases.
Over time, the technology will mature,
but the market may not be patient
enough to wait.

THE OBJECT/RELATIONAL MODEL
‘Object/relational’ means many things to
many people. The object/relational
model is the most recent development in
database thinking. In such a large market
with such high stakes to play for, it was
perhaps inevitable that the
object/relational model would become
many things to many people.

Object/relational technology is the
relational vendors’ response to object
databases. First and foremost, the
object/relational model is the relational
vendors’ response to the challenge of
object databases. Most relational vendors
have added to their products such
features of the object model as they

346 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

the cost of its adoption. Given that the
market has already held aloof from the
object model, it is difficult to see exactly
how this might be demonstrated. Until
the market decides otherwise, the
addition of object features to relational
products is best viewed as a mid-life
kicker for the relational model.

THE ASSOCIATIVE MODEL
The associative model of data is the
name given by Simon Williams to the
set of concepts, structures and techniques
underlying the Sentences database
management system. The associative
model builds on a body of academic
research that includes triple stores,
semantic networks, binary-relational
techniques and the entity relationship
model. Williams has added several
important and unique concepts. A
provisional US software patent
application for the associative model has
been lodged.

The associative model sees information
in the same way as the brain does: as
things and associations between them.
These associations are expressed through
the simple subject-verb-object syntax of
an English sentence — hence the name
of the product. Here are a few sentences
that fit the syntax of the associative
model. The verbs are written in italics to
make the composition of the sentences
clear. (Some ‘verbs’ are actually
prepositions but this distinction is
ignored for the purposes of the model.)

The sky is coloured blue
Mary Murphy is sister to William
Peters
Cows eat grass
Grass is a plant
Avis has a credit limit of 10,000
London is located in the UK

A sentence may itself be the subject or

has to search hard to find them in their
book. They even pull off a nice piece of
semantic misdirection by using the
abbreviation ‘OO’, firmly ingrained into
marketers’ psyches as ‘object-oriented’, to
mean ‘other orthogonal’, which is
something else entirely.

Object/relational lacks a conceptual
model. Various authors have rightly
stressed the importance of a clean, sturdy
and consistent conceptual model as the
foundation for any application, and,
because database management systems
form the basis for many other
applications, the need for a sound
conceptual model in their case is more
fundamental than ever. But, with the
exception of Date and Darwen, the
conceptual models underlying other
interpretations of object/relational
technology have strayed so far from their
roots in both camps that they
demonstrably fail to meet this criterion.
But no-one is likely to implement Date
and Darwen’s proposals because one of
its pillars is the abandonment of SQL,
and in the minds of a large section of
the marketplace, SQL is the relational
model. It would be impossible to market
the benefits of the relational model
without SQL, and it would be
impossible to implement Date and
Darwen’s proposals without abandoning
SQL.

Object/relational is essentially a
mid-life kicker for the relational model.
Date and Darwen aside, the selective
addition of object-oriented features to
products whose hearts and souls are
relational owes more to marketing than
to sound conceptualising, and cannot
legitimately be viewed as the birth of a
new data model. Time will tell whether
the market will embrace or reject
object/relational technology. To win
broad acceptance, its proponents must
demonstrate that the marginal value that
it adds to the relational model justifies

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 347

The associative model of data

existence does not depend on any
other thing

— associations are things whose existence
depends on one or more other things,
such that if any of those things ceases
to exist, then the thing itself ceases to
exist or becomes meaningless.

For example:

— a person is an entity, while a person’s
roles as a customer, an employee, a
spouse, a salesperson, a shareholder, a
team member and so on are
associations

— an enterprise is an entity, while an
enterprise’s roles as a customer, a
supplier, a contractual party, a tenant,
and so on are associations

— a consumer good, such as a car or a
television, is an entity, while its
various roles as the end product of a
manufacturing process, a production
schedule line item, the subject of a
warranty agreement, and so on are
associations

— a building is an entity, while its
various roles as a corporate
headquarters, a workplace, the
location of assets are associations.

An association may depend upon another
association: for example, a sales order
may depend on a customer, which is
itself an association. Similarly each line of
a sales order depends on the sales order
itself (see Figure 1).

Things, and their interactions with

object of another sentence, so the
associative model can express quite
complex concepts:

(Flight BA123 arrives at 16:15) on
Saturdays
The Bible says (God created the World)

The relational and the associative models
are next shown side by side. One of the
tables that was considered earlier is first
shown again in Table 3.

Then, the sentences:

Avis is a Customer
Avis has telephone number

020 7123 4567
Avis has credit limit £10,000
Avis has outstanding balance of £4,567
Boeing is a Customer

Boeing has telephone number
020 8345 6789

Boeing has credit limit £2,500
Boeing has outstanding balance £1,098

. . . and so on.

Entities and associations
Real-world things are entities or
associations. The associative model
divides the real-world things about
which data is to be recorded into two
sorts:

— entities are things that have discrete,
independent existence. An entity’s

348 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

Table 3: Customers

Customer
number Name

Telephone
number

Credit
limit

Outstanding
balance

456
567
678
789

Avis
Boeing
CA
Dell

020 7123 4567
020 8345 6789
0123 45678
0134 56789

£10,000
£2,500

£50,000
£21,000

£4,567
£1,098

£14,567
£6,789

as peripheral. Most other systems would
model a customer as an independent
entity or object, while in the associative
model it is an association. Specifically,
the relational model does not distinguish
entities and associations, on the grounds
that both entities and associations have,
in Codd’s words, immediate properties.
This is certainly a good reason to treat
them similarly in many respects, but it is
not a sufficient reason to ignore the
distinction: to do so is rather like saying
that because women and men are both
human beings, therefore we can ignore
any differences between them.

Associative building blocks

Items and links

An associative database comprises two
data structures:

— set of items, each of which has a
unique identifier, a name and a type.

— a set of links, each of which has a
unique identifier, together with the
unique identifiers of three other
things, that represent the source, verb
and target of a fact that is recorded
about the source in the database. Each

other things, are separate ideas. By
classifying real-world things as entities
and associations, the associative model
separates two ideas: on one hand, the
idea of something that has discrete,
independent existence, and on the other
hand the idea of the various ways in
which such a thing interacts with other
things. Each such interaction is a thing
in its own right, about which marketers
may want to record information. A
real-world association is represented as an
association between two other things,
each of which might itself be an entity
or an association.

The associative model distinguishes
entities and associations for a simple and
fundamentally important reason: data
models constructed by following this
principle are closer to reality, and thus
easier to comprehend, better able to
respond to change, and better able to
integrate readily with other data models.
Such data models will serve users better
and prove more cost-effective, in both
the short term and, more importantly,
over the long term.

Most data models ignore this
distinction. The distinction between
entities and associations is one that other
data modelling systems ignore or regard

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 349

The associative model of data

Figure 1

Person
Legal
entity

customer of

Book

Person Legal
entity

custome of

orders

Custom er:

O rder:

it is more convenient to keep going in a
long string. When this is done, brackets
are put around each link. Written this
way, the example would look like this:

((Flight BA1234 arrived at Heathrow
Airport) on 12-Aug-98) at 10:25am

This may look more like human
language than the contents of a database,
but if the marketer chooses for a
moment to view the associative model in
a relational sort of way, it can be seea
that an associative database could be
stored in just two tables: one for items
and one for links. Each item and link has
a meaningless number as its key (Tables
4 and 5).

THE BOOKSELLER PROBLEM
A more sophisticated problem that shows
metadata as well as data is now
considered. Here is the problem: An
Internet retail bookseller operates through
legal entities in various countries. Any
legal entity may sell books to anyone.
People are required to register with the
legal entity before they can purchase. For
copyright and legal reasons not all books
are sold in all countries, so the books
that each legal entity can offer a
customer depend on the customer’s
country of residence. Each legal entity
sets its own prices in local currency
according to the customer’s country of
residence. Price increases may be
recorded ahead of the date that they
become effective. Customers are awarded
points when they buy, which may be
traded in against the price of a purchase.
The number of points awarded for a
given book by a legal entity does not
vary with the currency in which it is
priced.

Here are the metadata that describes
the structure of orders. The items in
bold are entity types.

of the three things identified by the
source, verb and target may be either
a link or an item.

How the associative model would use
these two structures to store the piece of
information ‘Flight BA1234 arrived at
London Heathrow on 12-Dec-98 at
10:25am’ is now described. There are
seven items: the four things ‘Flight
BA1234’, ‘London Heathrow’,
‘12-Dec-98’ and ‘10:24am’, and the
three verbs ‘arrived at’, ‘on’ and ‘at’.
Three links are needed to store the data.
They are:

Flight BA1234 arrived at Heathrow
Airport

. . . on 12-Aug-98
. . . at 10:25am

Each line is one link. The first link uses
‘arrived at’ to associate ‘Flight BA1234’
and ‘Heathrow Airport’. The second link
uses ‘on’ to associate the first link and
‘12-Aug-98’. (A link that begins with an
ellipsis ‘. . .’ has the previous link as its
source.) The third link uses ‘at’ to
associate the second link and ‘10:25am’.

When writing links, instead of using
new lines to show each link, sometimes

350 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

Table 4: Items

Identifier Name

77
08
32
48
12
67
09

Flight BA1234
London Heathrow
12-Aug-98
10:25am
arrived at
on
at

Table 5: Links

Identifier Source Verb Target

74
03
64

77
74
03

12
67
09

08
32
48

. . . worth 35 points

. . . in Britain
. . . from 1-Jan-00

. . . at £8
. . . in America

. . . from 1-Jan-00
. . . at $14

Bookpages sells Spycatcher
. . . worth 35 points
. . . in America

. . . from 1-Jun-00
. . . at $13

Now, for each of the two customers the
number of points awarded to date are
recorded, together with a single order:

Simon Williams customer of Bookpages
. . . has earned 1,200 points
. . . orders Dr No

. . . on 10-Oct-00
. . . at £10

Mary Davis customer of Amazon
. . . has earned 750 points
. . . orders Spycatcher

. . . on 19-Oct-00
. . . at $12

The metadata for the bookseller problem
are shown in diagrammatic form in
Figure 2. The ovals are items; the lines
are links. The circles on the lines are the
anchor points for links between items
and other links.

The part of the data for the bookseller
problem is shown in the same
diagrammatic form in Figure 3.

Associative vs relational schemas
The metadata for the bookseller problem
in associative and relational forms is now
shown side by side. First, the associative
metadata again:

Legal entity sells Book
. . . worth Points
. . . in Country

Legal entity sells Book
. . . worth Points
. . . in Country

. . . from Date
. . . at Price

Person lives in Country
Person customer of Legal entity

. . . has earned Points

. . . orders Book
. . . on Date

. . . at Price

Now the data themselves. The items in
italics are entities. First, the group of
them being used are defined; two legal
entities, two books, two customers and
two countries:

Amazon is a Legal entity
Bookpages is a Legal entity
Dr No is a Book
Simon Williams is a Person
Simon Williams lives in Britain
Mary Davis is a Person
Mary Davis lives in America
Britain is a Country
America is a Country
Spycatcher is a Book

Next comes the price list:

Amazon sells Dr No
. . . worth 75 points
. . . in Britain

. . . from 1-Jan-00
. . . at £10

. . . in America
. . . from 1-Mar-00

. . . at $16
Amazon sells Spycatcher

. . . worth 50 points

. . . in Britain
. . . from 1-Jun-00

. . . at £7
. . . in America

. . . from 1-Jun-00
. . . at $12

Bookpages sells Dr No

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 351

The associative model of data

CREATE TABLE Person
(Person_id ,

Person_name ,
Country_id REFERENCES

Country ,
PRIMARY KEY (Person_id))

CREATE TABLE Country
(Country_id ,

Country_name ,
PRIMARY KEY (Country_id))

. . . from Date
. . . at Price

Person lives in Country
Person customer of Legal entity

. . . has earned Points

. . . orders Book
. . . on Date

. . . at Price

Here is the SQL solution to the same
problem:

352 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

Figure 2

Figure 3

Book

Date

Country

Person

Price in

from the
date of

at the
price of

Iives
in

at a
price of

Points

has
earned

worth

on the
date of

orders

customer of Legal
entity

sells

1-Jan-00

£10 in

lives
1,200
points

has
earned

worth

orders

points
10-Oct-00

from the
date of

at the
price of

at a
price of

on the
dateof

Britain
Dr No

Book pages

sells

customer of
Simon

Williams

Books_sold_by_country)

CREATE TABLE Customer
(Legal_entity_id REFERENCES

Legal_entity ,
Person_id REFERENCES Person ,
Points_earned ,
PRIMARY KEY (Legal_entity_id ,

Person_id))

CREATE TABLE Order
(Order_id ,

Legal_entity_id REFERENCES
Legal_entity ,

Person_id REFERENCES Person ,
Book_id REFERENCES Book ,
Order_date ,
Price ,
PRIMARY KEY (Order_id)
FOREIGN KEY (Legal_entity_id,

Person_id)
REFERENCES Customer)

So, what the associative model says in 11
lines of schema takes 51 lines of SQL.
The relations that record the same data
as the associative model example above
are shown in Tables 6 to 14.

CREATE TABLE Book
(Book_id ,

Book_name ,
PRIMARY KEY (Book_id))

CREATE TABLE Legal_entity
(Legal_entity_id ,

Legal_entity_name ,
PRIMARY KEY (Legal_entity_id))

CREATE TABLE Books_sold
(Legal_entity_id REFERENCES

Legal_entity ,
Book_id REFERENCES Book ,
Points ,
PRIMARY KEY (Legal_entity_id,

Book_id))
CREATE TABLE

Books_sold_by_country
(Legal_entity_id REFERENCES

Legal_entity ,
Book_id REFERENCES Book ,
Country_id REFERENCES

Country ,
PRIMARY KEY (Legal_entity_id,

Book_id,
Country_id) ,

FOREIGN KEY (Legal_entity_id,
Book_id)

REFERENCES Books_sold)

CREATE TABLE Price_list
(Legal_entity_id REFERENCES

Legal_entity ,
Book_id REFERENCES Book ,
Country_id REFERENCES

Country ,
Effective_date ,
Price ,
PRIMARY KEY (Legal_entity_id,

Book_id,
Country_id, Effective_date) ,

FOREIGN KEY (Legal_entity_id,
Book_id)

REFERENCES Books_sold,
FOREIGN KEY (Legal_entity_id,

Book_id,
Country_id) REFERENCES

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 353

The associative model of data

Table 6: Person

Person id Person name Country id

P123
P234

Simon Williams
Mary David

GB
USA

Table 7: Country

Country id Country name

GB
USA

Britain
America

Table 8: Book

Book id Book name

B345
B456

Dr No
Spycatcher

THE ASSOCIATIVE EDGE
Four significant limitations of the
relational model that the market has not
yet challenged, and that the associative
model overcomes were cited earlier on.
Let us see how it does so.

One program, many applications
Every relational program must be
designed around the tables that it uses.
As seen earlier, each new relational
application needs a new set of programs
written from scratch, because a program
written for one application cannot be
reused for another. Every table is
structured differently — that is, it has
different columns and column headings
— and the programs are designed around
the tables. How does the associative
model avoid this?

The information that describes how
data are stored in a database is called
‘metadata’. Metadata describe the
structure and permitted state of data in a
database. Structure is concerned with the
different types of data that a database
may contain, and how the different types
of data interrelate. State is concerned
with the rules which govern the values
that data items may take, both
individually and with respect to other
data items. The metadata that describe a
single database are called a schema.

In a relational database, a schema
comprises the names of tables and
columns and the domains on which the
columns are based, information about
which columns are keys, and ‘referential
integrity’ rules that describe how some
data items depend on others. The two

354 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

Table 9: Legal entity

Legal entity id Legal entity name

L01
L02

Amazon
Bookpages

Table 10: Books sold

Legal entity id Book id Points

L01
L01
L02
L02

B345
B456
B345
B456

75
50
35
35

Table 11: Books sold by country

Legal entity id Book id Country id

L01
L01
L01
L01
L02
L02
L02

B345
B345
B456
B456
B345
B345
B456

GB
USA
GB
USA
GB
USA
USA

Table 12: Price list

Legal
entity id

Book
id

Country
id

Effective
date Price

L01
L01
L01
L01
L02
L02
L02

B345
B345
B456
B456
B345
B345
B456

GB
USA
GB
USA
GB
USA
USA

1-Jan-00
1-Mar-00
1-Jun-00
1-Jun-00
1-Jan-00
1-Jan-00
1-Apr-00

£10
$16
£7

$12
£8

$14
$13

Table 13: Customer

Legal entity id Person id Points earned

L01
L02

P234
P123

750
1,200

Table 14: Order

Order id Legal entity id Person id Book id Order date Price

O2001
O2006

L01
L02

P123
P234

B345
B456

10-Oct-00
19-Oct-00

£10
$12

Metacode allows programs to be written
that can operate on any and every
business entity without modification.
This substantially reduces the number of
new programs needed for a new
application. Also, as more applications are
deployed, the proportion of new
requirements that can be fulfilled by
existing programs increases, so the
number of new programs that have to be
written decreases still further. Today,
programmers continually have to
re-invent the wheel by rewriting familiar
programs to work with new tables.
Breaking this cycle will significantly
reduce the cost of computing.

The reusability of metacode means
that many simple applications can be
implemented using existing programs.
This opens the door to a much greater
involvement of end-users in the creation
of applications. Once they become
familiar with a core repertoire of
Sentences programs, many end-users will
be able to develop and deploy simple
applications without any specialist help.

Different behaviour for different
needs
Parameterisation and customisation are
poor solutions for ASPs. Relational
database applications can only be tailored
to the needs of individual customers via
parameterisation or customisation. The
first route leads to increasing complexity,
and the latter makes the upgrade path
more difficult. Both options fail
adequately to meet the needs of ASPs.
The associative model provides a natural
and unobtrusive way to solve these
problems that does not compromise
functionality or increase complexity.

Each user’s view of an application can
be tailored through a profile. An
associative database comprises a number
of chapters. A user’s view of the database
is determined by their profile, which

different parts of a relational schema are
expressed in two different ways:
everything except the referential integrity
rules is expressed in SQL, and the
referential integrity rules are expressed in
a procedural language. Each vendor’s
system uses a different procedural
language for this purpose.

Every program that uses a database
needs a schema to tell it how the data in
the database are structured. Programs
obtain schemas in two ways: either the
schema is known before the program is
written and the program is designed to
use the specific schema, or the program
reads schemas as it goes and is able to
interpret and act on anything that it
finds. A program that is written to use
one predetermined and unchanging
schema is called ‘unicompetent’. A
program that is able to use any and
every schema is called ‘omnicompetent’.
A good example of an omnicompetent
program is a spreadsheet application such
as Excel or Lotus 123.

It is difficult to write omnicompetent
programs for relational databases.
Relational databases comprise dissimilar
tables each with dissimilar columns, and
their schemas are stored separately, often
using two different languages. This
makes it very difficult to write
omnicompetent programs, and there are
no mainstream programming tools for
relational databases that support the
development of omnicompetent
programs. With the exception of a few
specialised tools such as report writers,
the overwhelming majority of application
programs that access relational databases
are unicompetent.

By contrast, the associative model
stores all data and schemas side-by-side
in the same simple, consistent form. This
means that it is easy to write
omnicompetent programs using a form of
abstract programming called ‘metacode’
that is part of the associative model.

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 355

The associative model of data

exist in peer networks in individual
chapters. When chapters are collected
together in a profile, the items and
links in each chapter simply form a
wider peer network, and chapters
become transparent. When links are
created between items in different
chapters, if either the source or target
of the link is not visible in the
current profile, neither is the link
itself

— changes and deletions are effected
solely by additions to the database. A
deleted association is not physically
removed, but acquires an association
(a ‘stop link’) which asserts that it is
deleted. Thus the association may
appear to be either deleted or not
according to whether the chapter
containing the stop link is part of the
user’s profile. Similarly, a renamed
entity is not physically renamed, but
acquires a link to its new name. Thus
the new name or the old name is
presented according to whether the
chapter containing the new name is
part of the user’s profile.

Profiles have a variety of uses. Some
scenarios that show how the profile
mechanism can be used to advantage
follow:

— an ASP wishes to provide unique
functionality to each of its customers.
As well as the chapters containing the
application’s core functionality, each
customer’s profile includes an extra
chapter containing the schema
changes unique to the customer. The
core functionality can continue to
evolve, and each customer’s additions
will continue to be superimposed. If
customer A wishes to take advantage
of functionality developed for
customer B, customer B’s chapter is
simply included in customer A’s
profile

contains the list of chapters that they
currently see. During the development of
a schema, designers are free to place
elements of the schema into any chapter
that they choose, and that piece of the
schema will be operative or inoperative
depending on whether the chapter
containing it is included or excluded
from the user’s profile. Similarly, during
execution, changes that the user makes
to the database may be directed into any
of or several of the chapters in the user’s
profile.

Profiles are a powerful tool to manage
functionality. Chapters may be added to
and removed from a user’s profile at any
time, without deleterious effects on the
integrity of the database. Of course, the
user’s view of the database may be
radically altered by the addition or
removal of chapters to or from their
profile, and the ability to amend profiles
is a privileged operation to which many
users would not be authorised. For
example, a human resources application
to be used in both the UK and the USA
might use three chapters for its schema:

Chapter A: Person first name Name
Seen by all users

Person family name
Name
Seen by all users

Chapter B: Person postcode
Postcode
Seen by UK users

Chapter C: Person zip code Zip
code
Seen by US users

Profiles rely on granularity and change
control. The profile mechanism works
for two reasons:

— the associative model is highly
granular. Individual items and links

356 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

to set aside a column in every row to
store a piece of information in just one
row, and because a programmer needs to
modify the programs every time a new
column is added. How does the
associative model overcome this?

Under the associative model, pieces of
information about a customer are
arranged vertically as a list of sentences
instead of horizontally as the columns of
a row in a table. So 15 sentences can be
kept about one customer and ten about
the next without implying that the
second customer has five sentences
missing. Unlike the relational model,
there is no need to keep five null values
for the five ‘empty’ columns: there are
simply five fewer sentences. Addresses
provide an example of how the
associative model wins. Addresses may
have one or two or three lines before
city, state or county and zip or post
code. In a relational database, the
number of columns allowed for address
lines is always a trade-off between clarity
and waste. If three columns are allowed
and a customer has only one address line,
two nulls must be stored to say that the
second and third lines are missing. If one
column is allowed and the customer has
three address lines, chances are their
deliveries will go astray. In an associative
database, each customer simply has the
correct number of address lines: if a
customer has two address lines, two are
stored, and the third is not in any sense
missing: it simply does not exist.

Users can capture new business rules
without a programmer’s help. The paper
has already described how the associative
model’s metacode allows marketers to
write omnicompetent programs that are
able to read and use schemas as they go.
When it is decided to store a new piece
of information about a certain type of
entity, the marketer simply adds to the
schema. The need to modify programs
each time a column is added then goes

— an application is to be used by both
English and French-speaking users. It
is developed in English. A new
chapter is added to the translator’s
profile as the recipient for all schema
changes made by the translator. The
translator then changes the name of
every schema element to its French
equivalent. Users who wish to see the
application in French include the new
chapter in their profiles: users who
wish to see it in English omit it

— a salesperson using a CRM
application wishes to record the
birthdays of their key customers’
children. A new chapter is created
containing only the schema changes
necessary to implement this
functionality, and only the salesperson
who requires the functionality will
see it

— a package vendor is developing a new
release of its package. The developers’
profile includes the chapters
containing the current release, plus a
chapter for the new release into
which schema changes are directed.
To install the new release, customers
simply add the new chapter to their
existing profiles. To run the two
releases in parallel for a test period,
customers use a new chapter to
capture data that instantiates types
contained in the new release and
work normally. They can flip-flop
between the old and new releases by
moving the two new chapters into
and out of their profile to assess the
impact of the new release.

Different information for different
customers
All customers are not the same — why
store the same information about each
one? The relational model limits the
marketer to storing the same data about
each customer because it is uneconomic

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 357

The associative model of data

before even beginning to combine two
different relational databases matching
tables and columns must be found and
compared, differences resolved, and
decidsions made about what to do about
tables and columns that simply do not
match. By contrast, combining two
associative databases is like putting
together two documents both written in
English on the same word processor.
One can immediately be added to the
other with no preparation. The result
will be perfectly comprehensible, and
will answer more questions than did
either text on its own. If the two
databases are to remain as one, the user
can then can edit and enhance the
combined whole to establish common
definitions and remove ambiguities.

Links can be added to resolve
ambiguity. Associative databases can
always be combined with no preparation
because the associative model uses one
consistent form — sentences — for all
data and metadata. Every associative
database has the capability of being
self-defining: that is, of carrying its own
definition within itself. Where two
databases use dissimilar names — perhaps
in different languages — for identical
types of data or individual data items,
users can associate equivalent types and
data items to resolve ambiguity simply by
adding extra links:

Customer is equivalent to Client
Delivery address is equivalent to

Shipping address
BT is equivalent to British Telecom

Entity types that perform essentially the
same function will usually have different
sets of data items in each database, but,
unlike the relational model, the
associative model does not insist that all
entities of one type have the same set of
data items and does not allocate space for
missing data items, so this is not an issue.

away: the new information can be
immediately understood and processed by
the omnicompetent programs. For
example, suppose a sales prospect, Avis,
insists that, if to win its business, the
system must guarantee that its account
balance with the company will never
exceed £10,000. No other customer has
ever asked for such a guarantee, so it is
not something that the system currently
supports. The schema to define the new
limit and its rules comprises just two
new links which would have needed to
be added:

Avis has balance limit Monetary value
. . . must not exceed Account

balance

followed by one more sentence — this
time real data, not metadata — to set the
balance limit for Avis:

Avis has balance limit £10,000

The metacode in the programs already
understands ‘Monetary value’ and ‘must
not exceed’, so the task is done and Avis
can be given the guarantee that it needs.
In the relational world, an enhancement
like this for a single customer would
simply be uneconomic, so the Avis
account would be lost. In the associative
world, a moderately sophisticated user
could readily use Sentences in this way
to solve their problem and win a new
customer without any need to involve a
programmer.

Many databases, one data world
Associative databases may be readily
combined. Combining two relational
databases is like trying to combine two
books written in different languages:
before starting on the useful work one of
them has to be translated into the
language of the other. As seen above,

358 Journal of Database Marketing Vol. 8, 4, 336–359 Henry Stewart Publications 1350-2328 (2001)

Williams

of databases may also be distributed
across networks and the Internet in any
configuration without any administrative
or programming overhead, allowing
complete freedom of resource utilisation.

Copyright �2000 Lazy Software Limited

This capability of the associative
model allows information in different
databases to be correlated without the
need for the additional costs of data
warehousing, and permits separate
databases to be readily combined.
Individual databases and related networks

Henry Stewart Publications 1350-2328 (2001) Vol. 8, 4, 336–359 Journal of Database Marketing 359

The associative model of data

	The associative model of data
	INTRODUCTION
	Using the relational model
	Using the associative model

	DATABASES SO FAR
	THE RELATIONAL MODEL
	Tables, rows and columns
	The meaning of ‘relational’
	Why must new programs be written for every application?

	Why is it expensive to customise applications for individual users?

	Why must the same information about every customer be stored?

	Why is it so difficult to combine and correlate databases?

	THE OBJECT MODEL

	THE OBJECT/RELATIONAL MODEL
	THE ASSOCIATIVE MODEL
	Entities and associations
	Associative building blocks
	Items and links

	THE BOOKSELLER PROBLEM
	Associative vs relational schemas

	THE ASSOCIATIVE EDGE
	One program, many applications
	Different behaviour for different needs

	Different information for different customers

	Many databases, one data world

