
* Copyright © 2002 by the Consortium for Computing in Small Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing in Small Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

154

THE ASSOCIATIVE DATA MODEL*

Ronald S. King and Stephen B. Rainwater
Department of Computer Science
The University of Texas at Tyler

College of Engineering and Computer Science
3900 University Blvd.

Tyler, Texas 75799
Phone#: (903)-566-7403

rking@mail.uttyl.edu
srainwat@mail.uttyl.edu

1 INTRODUCTION

The associative data model, ADM, is a new data model implemented in Lazy Software
Inc.'s new associative data modeling system trademarked as Sentences [8]. Sentences is a
multi-user, web-enabled database modeling system, useable for internet applications, especially
application service providers (ASPs). This model is an excellent topic to include on web-based
components from the introductory to advanced database classes as described by [7]. An
overview of the ADM and Sentences is provided for in this paper.

2 BACKGROUND

Currently most database applications are implemented in either the relational, object, or
object-relational data models. Even though the relational model is well suited to transaction
processing, it cannot manage complex data structures typical of multimedia applications. Also,
the relational model does not easily support the distribution of one database across a number
of servers, which is the natural model for the internet. Object-oriented databases store small
numbers of large objects more efficiently than large numbers of small ones. The latter feature
of the object-oriented data model is counter to the Internet needs of modern database
processing where lightweight technologies have components that can be distributed across the
Internet itself and embedded in browsers and web sites. Additionally, object databases

CCSC: South Central Conference

155

currently lack essential features such as SQL support, authorization and access control,
performance tuning, and interfaces to transaction monitors and other databases. The
object-relational model however abandons SQL which is felt by many professionals in the field
to be the relational data model.

The associative data model has the “look-and-feel” of Object Role Modeling, ORM,
developed in Europe in the mid-1970s [1,5]. Falkenberg [6] proposed the fundamental ORM
framework which he called the “object-role model”. This framework allowed n-ary and nested
relationships for modeling information systems. The framework was eventually modified to a
method renamed "Natural language Information Analysis Method" (NIAM) [4]. An overview
of ORM noting its advantages over entity relationship and traditional object oriented modeling
is discussed in [2]. ORM is normally implemented as a set of relational tables, clearly a level
of indirection. An in-depth coverage of ORM is presented in the new text by Halpin [3].e

The Associative Data Model developed by Simon Williams simply implements things and
associations between them via R-trees. Thus the Associative Data Model has been
implemented in an associative data modeling system directly by Lazy Software, Inc. Sentences
is a multi-user, web-enabled DBMS written in Java complete with a full set of development
tools, interfaces and applications. The first general release of the product, 1.1 Sentences, was
in October 2000; it runs under SUN Solaris, Windows NT or Linux. The ancillary tools that
provide the user interface, schema specification facilities and query support can make use of
Microsoft, Apache, WebSphere and Tomcat Web servers, with Windows clients running either
Microsoft or Netscape browsers. Release 2.0 includes XML support and allows for stored
procedures and triggers.

3 COMPARISON OF THE RELATIONAL AND ASSOCIATIVE DATA
MODELS

The relational data model has many disadvantages which can be overcome by the
associative data model. For instance, when employing the relational data model, each time a
new application is constructed, the applications programmer would have to construct or modify
a new set of tables. The latter practice is both time consuming and complex. Omnicompetent
programming, a feature of the associative data model, allows for a single set of programs to
implement many different applications. Also, companies or businesses often want to record
information that is relevant only to a particular customer. In the relational data model, the
programmer or database designer would accomplish the latter task via text or through null
values in the relevant table column. Neither of these two solutions is truly satisfactory. Through
the instance schema feature, the Sentences DBMS enables schema and rules to apply to a
single instance in the database with no overhead. Additionally many company databases are
reflecting mergers taking place worldwide. In Sentences, distinct databases can be viewed
together or amalgamated at any time without special tools for data correlation and analysis
through the Schema aggregation feature. Sentences also allows for feature programming
whereby features can be made visible or invisible to individual users. This latter feature is ideally
suited to the needs of today's Application Service Providers (ASPs).

JCSC 17, 5 (April 2002)

156

4 THE ASSOCIATIVE DATA MODEL

In the associative data model, a database comprises two types of data: entities and
associations. Entities are things, or objects, that have discrete, independent existence.
Associations are things whose existence depends on one or more other things, such that if any
of those things ceases to exist, then the original thing itself ceases to exist or becomes
meaningless. Associations are allowed to depend upon other associations. In the associative
model, all attributes are represented as links between things within the database, and the target
of every attribute is another thing that is represented within the database in its own right. In
contrast, the relational data model has tuples as the source of an attribute and the target is the
value contained by the cell under the column heading in the tuple. Thus in the associative data
model, attributes are represented as links between the entity or association whose attribute that
is being recorded as the source, a verb to express the nature of the attribute, and an entity or
association as the target.

The impact of the latter representation is that things and associations are no different from
associations in general. At any time the database designer or programmer may decide to
describe an attribute by giving it attributes of its own. In the relational data model this would
require restructuring the database, replacing a value by a foreign key and adding a new relation.
The associative data model can be viewed as a vertically defined model on variable length data
whereas the relational data model processes fixed length tuples horizontally.

4.1 Example Sentences Database

Consider a mail order database application. Suppose the database designer needed to
store the following piece of information: "Bob ordered a recordable compact disk on July 7th,
2001 from Alpha, Inc." This piece of information contains four entities: Bob, recordable
compact disk, (July 7th, 2001) and (Alpha, Inc.). Additionally this information contains three
links: ordered, on and from. Three links are required to store the data, as represented in the
Sentences DBMS, by:

Bob ordered recordable compact disk
... on July 7, 2001

... from Alpha, Inc.

or we have:

(((Bob ordered recordable compact disk)
on July 7, 2001) from Alpha, Inc.)

This information could be implemented with following tables:

CCSC: South Central Conference

157

Items

Identifier Name

23 Bob

14 recordable compact disk

77 July 7, 2001

81 Alpha, Inc

92 ordered

101 on

16 from

Links

Identifier Source Verb Target
19 23 92 14
21 19 101 77
36 21 16 81

4.2 Associative Data Model for the Example Sentences Database

A segment of a corresponding associative data model would involve items (ovals) and
links (lines) in a semantic network diagram.

The semantic network can be implemented in the Sentences DBMS. Every association
has the following properties: a name, source type, target type, cardinality, inverse cardinality,
being sequenced or sorted, and a default target. The associative data model permits an
associa tive type that is specific to a single entity or association. Additionally, an entity or
association type may be a subtype or supertype of another type. Besides subtypes and
supertypes, the associative data model allows for the use of inferred subsets and supersets. For
example,

Good Customer subset of Customer.

The Sentences Explorer is the GUI for defining the schema. Both schema and data panes
are included on the GUI. Menu and tool bars allow for filtering and positioning. Drill-down and
dataforms enable dynamic mechanisms for creating, displaying and manipulating data.

JCSC 17, 5 (April 2002)

158

Sentences schema and data information are stored in chapter files. One or more chapters
is combined to make a profile. Essentially a profile is a view of a Sentences database, the
mechanism which facilitates modular database design. Chapters may be added to and removed
from a user's profile at any time, without deleterious effects on the integrity of the database.

Sentences allows for a variety of means for importing and exporting schema and data
information: Comma Separate Variate (CSV) files, a Sentence's specific file format for
importing and exporting Profiles. Loading and extraction of data from Sentences can also be
accomplished with API in a custom Java program.

4.3 Query Language for the Associative Data Model

Associative algebra is the basis for query processing in the Sentences DBMS, which is
derived directly from SQL. The following operators are available, for release 1.1: union,
intersection, difference, product, select, project, join, divide, extend, summarize, rename, and
recursive closure. Only extend, summarize, and recursive closure differ from the traditional
SQL operators. Extend forms in Sentences include the associative type that has the original
type as source and a new type, instances of which are derived from the source as target.
Summarize forms a type whose instances are formed by grouping instances of the original type
that have the same sub-tree as source, and creating one instance of the new type for each
subgroup, with the sub-tree as source and an instance aggregating corresponding sub-trees of
the group as target. The recursive closure forms a relation by joining a self-referencing type

with itself, taking the result and joining it again with the original type, as many times as
necessary.

The schema for the latter associative data model for the mail-order business would be:

Customer customer of Supplier
... visited on date

CCSC: South Central Conference

159

... bought Product
... time Quantity

Supplier sells Product
... at Price

Product in Category

An instance of sample data would be:

Bob customer of Best Buy
... visited on 25-June-01

... bought ink cartridge
... times 10

... bought diskettes
... times 200

Example queries in the Sentences DBMS are:

"Who shops at Best Buy?"

Q: Select (Customer customer of "Best Buy")
A: Bob customer of Best Buy
"What computer facilities has Bill bought?"
Q: Select (((("Bill" customer of Supplier) visited on date) bought Product) join (Product
category "computer facility"))
A: (((Bill customer of Ables Land) visited on 6-July-01) bought diskettes) join (diskettes
category computer facilities)

The Sentences Query Editor allows you to create and execute Sentences queries with a
GUI. The Editor is comprised of three panes: a query pane, a schema pane, and a results
pane. Queries are built using query operators and entity plus association types from the
schema. The Editor supports "drag and drop" and copy/paste features. Basically the Select
source retrieves the source entity or association instances from an association input set. The
Select target retrieves the target entity or association instances from an association input set.
A Join operator joins two input sets into a temporary output set with a source and target. Join
operators return a "cross-product" output set if no join parameters are present. A Group
operator allows for the traditional relational DBMS aggregation operations. Ordered results
from a query are available through the use of an Order By operation.

5 CONCLUSION

 The associative data model is capable of being implemented as a multi-user web-enabled
DBMS, as illustrated by Sentences, and at the same time overcoming several significant
limitations of the relational model. One program on a Sentences ADM database can implement
many applications, or what is normally referred to as omni-competent programming; a feat not
easily solved by the relational data model. A reduced emphasis on database integrity issues is
part of the ADM since the links for both entities and associations are internal to the database.

JCSC 17, 5 (April 2002)

160

Metacode for the database is implemented, using the ADM implementation in Sentences, which
enables programs to be written that will operate on business entities without modification.

The web-enabled database component for database classes should benefit from the
inclusion of both ORM and ADM. Sentences, representing a Web implementation of ORM
suitable for ASPs, enables the future small to medium sized business a low cost and efficient
means of providing their customers with a web-based tool. The ADM, inplemented in
Sentences, frees the information technology model to directly represent the business process:
the gap between business model and database implementation has been dramatically closed.

REFERENCES

[1] Abrial, J. R, Data Semantics, Data Base Management, eds J. W. Klimbie and K. L.
Koffeman. North-Holland, Amsteerdam, TheNetherlands, pp. 1-60, 1974.

[2] Halpin, T., Handbook on Architectures of Information Systems, Chapter 4: eds P.
Bernus, K. Mertins, and G. Schmidt, Springer, 1998.

[3] Halpin, T., Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design, Morgan Kaufmann, 2001.

[4] Nijssen, G. M. A gross architecture for the next generation database management
systems, Proceedings 1976 IFIP Working Conference on Modelling in Data Base
Management Systems, ed G.M. Nijssen, Freudenstadt, Germany, North Holland
Publishing, 1-24, 1976.

[5] Senko, M. E. Information systems: records, relations, sets, entities and things,
Information Systems, Pergamon Press, 1, (1), 3-12, 1975.

[6] Falkenberg, E. D. Concepts of modeling information, Proceedings 1976 IFIP Working
Conference on Modelling in Data Base Management Systems, ed G.M. Nijssen,
Freudenstadt, Germany, North Holland Publishing, 95-109, 1976.

[7] Springsteel, F., Robert, M. A., and Ricardo, C. M., The Next Decade of the Database
Course: Three Decades Speak to the Next. Proceedings of 31st SIGCSE Symposium
(March, 2000), ACM Press, 41.

[8] Williams, S., The Associative Data Model, Lazy Software Ltd., 2000.

