
Sentences

from Lazy Software

An extract from the Bloor Research

Product Evaluation Series

Research
Bloor

Fast facts

Sentences is an implementation (the first) of the Associative Model of Data. This model is an at-
tempt to resolve a problem that has gone largely unrecognised but is now coming to the fore.

The problem is this: using a relational database, each application is dependent on the tables in
the database that it addresses. Why is that an issue?

First, it means that each time you build a new application you have to construct or modify a new
set of tables, which is time consuming and complex. Secondly, it means that you cannot easily re-
cord unique data. If, for example, you wanted to record information that was relevant only to a
particular customer, then you would either have to do that as text, or allow null values in the rele-
vant table column. Neither of which is really satisfactory.

The Associative Model of Data was designed as an alternative to the relational model, that would
overcome these, and other, shortcomings of that approach. Sentences is the first database (it co-
mes with supporting tools) to implement the Associative Model.

Key findings

In the opinion of Bloor Research the following represent the key facts of which prospective users
should be aware:

• Applications written using Sentences should be much easier to maintain and tailor to cus-
tomer requirements that applications written against conventional databases.

• The database itself is much easier to design than conventional models. For example, an
eleven line Sentences schema (see below) requires 51 lines of SQL. Moreover, the metadata
in a Sentences schema is much more intuitive and can be read directly.

• While there will be some additional training requirements involved in adopting Sentences,
this will be much less than would otherwise be the case, because of its intuitive and read-
able nature.

• Currently in its first release, the product has limited scalability and, at present, it is primar-
ily aimed at “Internet-based, departmental information systems” even though the product
has been engineered with the features that one would expect in a high-end database de-
signed to support transaction processing.

• The interface for the query part of the product is a bit clunky and not as intuitive as the rest
of the product. Lazy Software plans to substantially upgrade this part of the product in the
next release.

• Lazy Software recognises that it is not going to replace existing technology at this stage and
is therefore focusing on co-existence, notably through supporting ODBC and a Java API.
The company is also putting a significant investment into XML for release 2.0 of Sentences,
which is due later in 2001.

© Bloor Research. All Reproduction Prohibited Page 1

Sentences from Lazy Software

The bottom line

We like the Associative Model of Data. While Object database vendors used to claim that objects
were more intuitive than relational tables, the associative approach is arguably more intuitive
than either. Moreover, it is not just the idea of associations that falls into this category, but its im-
plementation in Sentences. This is one area where object databases fell down: the idea may have
been simple but the implementation wasn’t. What Simon Williams and his colleagues at Lazy
Software have managed to produce is both a concept and an implementation that is intuitive and
easy to understand.

Of course, being elegant is one thing while resolving business problems is something else again.
But Sentences does precisely that. It should result in applications that are an order of magnitude
easier to maintain and customise than those based on conventional database technology. Within
the constraints of its current levels of scalability we would urge any company in the market for a
new database to seriously consider the merits of Sentences.

Page 2 © Bloor Research. All Reproduction Prohibited

Sentences from Lazy Software

Vendor Information

Background information

Lazy Software was formed in 1998 by Simon Williams, the former founder and Chief Executive of
Synon, together with two of his erstwhile colleagues, Simon Haigh and Melinda Horton.

Despite the fact that the product has only been officially available for less than six months, and
that it represents brand new technology, the company has already acquired some dozen custom-
ers. The most notable of these is Johnson Matthey, which has used Sentences to build an asset
management database, and is currently exploring other uses of the database within its organisa-
tion. Lazy Software already has one overseas client, in Australia.

The company describes the typical user system as an Internet-based, departmental information
system, usually aimed at improving group productivity. In particular, the rapid development as-
sociated with Sentences means that it is particularly suitable for systems that otherwise would not
get built, either because of the problems with a relational implementation or because of opportu-
nity costs.

At present the company is recruiting an internal sales force for direct sales and hopes to sign part-
nership agreements with VARs, to market into the general SME arena. While the flexibility of Sen-
tences could be ideal for the Application Service Provider (ASP) market, the product does not yet
scale (see below) to the sort of capacities required by a typical ASP. Thus this market is in abey-
ance, although Lazy Software hopes to address it in due course.

Lazy Software web address: www.lazysoft.com

Product availability & support commitment

The first general release of the product was in October 2000 with version 1.1. Sentences consists of
the database engine itself, which runs under Sun Solaris, Windows NT or Linux, and ancillary
tools that provide the user interface, schema specification facilities and query support. These can
make use of Microsoft, Apache, WebSphere and Tomcat web servers, with Windows clients run-
ning either Microsoft or Netscape browsers.

In the current release the database is suitable for use where the storage requirements are mea-
sured in hundreds of megabytes, the number of heavy users in the tens, and hundreds or thou-
sands of casual or web-based users. Pricing is banded based on the number of database requests
being handled.

In addition to the product itself, the company offers three classes of service to its users including
training, telephone-based technical support and subscription to its library services. This last in-
cludes both product updates and web-based technical support.

The next major version of the product will be release 2.0, which is scheduled for Autumn 2001.
The major new feature of this release will be XML support.

© Bloor Research. All Reproduction Prohibited Page 3

Sentences from Lazy Software

Financial results

Initially Lazy Software was privately funded by the three founders but, at the end of 2000, the
company acquired £3.5m worth of venture capital. At the time of writing the company is solely
based in the UK, though it has just signed up its first distributor, in Switzerland. The company
plans to open its first office in the United States in May 2001. This, of course, is always a fraught
move but Simon Williams and his team have the experience of achieving success in this
endeavour with Synon (which eventually established its head office there), so this bodes well for
the future. The company currently has 20 staff.

Page 4 © Bloor Research. All Reproduction Prohibited

Sentences from Lazy Software

Product description

Introduction

Sentences is an implementation of the Associative Model of Data, of which Simon Williams is the
author. So, to understand Sentences we first need to understand the Associative Model.

The Associative Model is based on two things: entities and associations, where entities are things
that exist in their own right and associations are things that only exist by virtue of their relation-
ship to something else. This can be illustrated diagrammatically as follows, where both the Entity
and Association types are subtypes of Type, and where Association types are both source and tar-
get types of Type:

There are various points to note about these definitions:

1. An association may be used to define the role that an entity plays. For example, a table is an
entity. But a dining room table, a kitchen table and a coffee table define particular functions
that a table is capable of taking. Similarly, a person may be an employee, a customer, an
accountant, a householder and so on. Here, these associations define the roles that a person
may play.

© Bloor Research. All Reproduction Prohibited Page 5

Sentences from Lazy Software

Type

Entity Type Association Type

Fig. 1: Entities and Association Types

2. Associations exist by virtue of their relationship to other things but “things” can be either
entities or associations. Thus an association can be dependent on another association. For
example, a sales order line depends on the sales order as a whole. Moreover, the sales order
may depend on the customer, which is itself an association. This is a marked difference from
relationships within a conventional entity-relationship model where relationships only exist
between entities. In addition, associations are explicit within this model where relationships
are implicit within the relational model.

3. From an implementational point of view, entities may be placed in context. That is, you can
circumscribe your world-view for practical purposes. For example, an enterprise is an entity
and its departments are associations. However, if looked at purely from a departmental point
of view, then the department involved can be defined as an entity.

At first sight, the word “association” may not seem the most intuitive term that Simon Williams
could have chosen. However, it should be remembered that association is not simply a synonym
for relationship. It is also a noun in the sense of an association of persons, a document setting forth
the common purpose of those persons and in the sense of an association of ideas.

The big difference between the Associative and the Relational models, is that the latter separates
data from metadata whereas the former doesn’t. That is, when building a relational database you
have to separately and specifically define the database schema. And whenever you add a new ta-
ble or change the definition of a table, you have to modify that schema. This is not the case with
the Associative model, in which data and metadata are stored side-by-side. For example, the fol-
lowing is how you would define the metadata related to a bookseller, where the items in bold type
are entity types:

Legal entity sells Book
… worth Points
… in Country

… from Date
… at Price

Person lives in Country

Person customer of Legal entity
… has earned Points
… orders Book

… on Date
… at Price

It is worth noting that it would take 51 lines of SQL to write an equivalent definition for a rela-
tional schema. Perhaps more significantly, you can actually read the Sentences metadata, to the
extent that it is not necessary for us to actually describe the scenario – you can deduce this directly
from the metadata.

The effect of this different approach to metadata is significant. In particular, it means that you can
write programs that read metadata directly as a part of the program. If an application can do this,
then it can run against any schema and you can change the database’s metadata without effecting
the suitability of the application. By contrast, with an application built against a relational data-

Page 6 © Bloor Research. All Reproduction Prohibited

Sentences from Lazy Software

base, you have to change the program whenever the database changes. The Associative model po-
tentially offers huge advantages when it comes to both application reuse and application
maintenance.

Architecture

Sentences is called that, precisely because that is how data is described within the database. This is
important because it directly mirrors the real world, which is a part of the reason that, conceptu-
ally at least, Sentences is so easy to use. In practice, a Sentences database consists of two types of
data structure:

• Items: each of which has a unique identifier, name and a type.

• Links: each of which has a unique identifier together with the unique identifiers of three
further things, which consist of a source, verb and target. For obvious reasons it is this
source-verb-target structure that leads to the product’s name. However, it should be noted
that each of these may be either an item or another link, while verbs may actually be prepo-
sitions.

If we continue with the Bookseller example used above, here is how Sentences would store the rel-
evant data. First, you would define the various entities. For example:

Amazon is a Legal entity
Dr No is a Book
Simon Williams is a Person
Simon Williams lives in Britain
Britain is a Country

Each of these sentences contains a subject (Amazon, Dr No etc.), a verb (is a, lives in and so on) and
a target which is either an item (legal entity, book and so forth) or another link (Britain).

In addition, you will need to store the price list (as well as customer details), which will be in the
format:

Amazon sells Dr No
… worth 75 points
… in Britain

… from 1-Jan-00
… at £10

… in America
… from 1-Mar-00

… at $16

Alternatively, Sentences allows you to define data using brackets to indicate nesting so that the
British pricing could be written:

(((Amazon sells Dr No worth 75 points) in Britain) from 1-Jan-00) at £10.

© Bloor Research. All Reproduction Prohibited Page 7

Sentences from Lazy Software

This vertical structuring into sentences has profound consequences. One of these is that there are
no rules that predicate that the same number of sentences must apply to each item. In the example
above, for instance, the link “… worth 75 points” applies to both Britain and America. However, it
would be quite feasible to have defined the schema in such a way that allocating points was not
mandatory and we could have links about points in Britain and not in America. Thus, for exam-
ple, you might want to store more information about some customers and less about others. In the
relational model this is only possible by allowing null values within the relevant database tables.
Using Sentences you just define the relevant characteristics of each customer, as appropriate. As a
simple example, this means that you only need to have the exact number of address lines that each
customer requires, rather than having to allow six or seven lines just because a few customers
have very long addresses. This is both space saving and, when it comes to more advanced applica-
tions such as CRM, more flexible.

There are two other important structures used within a Sentences database. These are profiles and
chapters. Typically, a Sentences database consists of a number of Chapters and developers are
free to place elements of the database schema in different Chapters as is appropriate. Profiles de-
fine the user views into the database and each may consist of one or more Chapters. This means
that particular elements of the schema may be operative or inoperative depending on which
Chapters are included in a particular Profile.

This organisation has a number of consequences beyond giving a personalised view of the data-
base. For example, a user may change or delete an association within his profile, without affecting
other profiles. This is because the deleted association is not physically removed, but acquires a
special type of association (a stop link) which simply states that the association has been discon-
tinued. Similarly, an entity name change is accomplished by acquiring a link to the new name.

Further, if you want to extend an application, for example to add a new business rule, then you
can simply insert this into the schema and you will not have to change the data in any way. More-
over, through the definition of Profiles you can limit any such extensions to particular circum-
stances. This means that you can very simply tailor an application for individual users (including
support for foreign language versions of the same application). While Sentences probably does
not have the capacity to be suitable for Application Service Providers (ASPs) right now, this sort
of facility is likely to prove attractive to these sorts of vendors in the future, as well as to VARs and
others.

Some other consequences of the Associative Model include the fact that distributive capability is a
natural feature of the model and that it will be much easier to merge two associative databases
than it is with conventional database models. The ability to cross-report against entities and asso-
ciations is also important. For example, the ability to list all the associations related to a particular
entity effectively provides a where-used list that can be used for impact analysis. Similarly, you
can click on an association type and see all instances of that association.

Product components

Sentences includes a number of components. These are:

• The Sentences Server – this is the database engine itself, which has been written in Java. It
has been deliberately engineered from the start as a grown up database, with transaction

Page 8 © Bloor Research. All Reproduction Prohibited

Sentences from Lazy Software

processing capability, concurrency support, ACID properties, rollback and recovery and so
forth. In addition, there is a Java API that may be used for coding directly in Java. Most stan-
dard datatypes are supported though there is no support for LOBs. Having said that, since
the product is written in Java, it should be relatively easy to build new datatypes when re-
quired, or Lazy Software can do this for you.

• Sentences Client – this allows web-based users to access the database. It runs as a set of Java
applets that provides search and browse capabilities for both data and schemas, forms data
entry capability and query execution. An example of a client screen, illustrating the
book-seller problem described above, is shown below.

The query facility uses drag and drop functions and looks superficially similar to SQL,
though there are some significant differences which may take some time to learn. This
query facility is not as intuitive as it might be and Lazy Software plans to implement some
major enhancements in this area in version 2.0.

© Bloor Research. All Reproduction Prohibited Page 9

Sentences from Lazy Software

Fig. 2: An example client screen

• Sentences DevTools – this extends the ability of the Client product by providing schema,
business rule and query capability in a more advanced manner. This can be used instead of,
or in addition to, the Java API for developing applications. As far as the schema facilities are
concerned, drag and drop is again used but here the user is much less likely to be confused.
Indeed, the lack of any need to reference tables or worry about the restrictions imposed by
keys, means that this is incomparably easier than conventional relational modelling. It
should also be noted that you can import scheme definitions via CSV (comma separated
values) files should you wish to do so.

• Sentences Gateway – this provides interoperability with other environments, primarily
through an ODBC interface in this release. A major feature of version 2.0 will be the support
for XML. It is worth noting that the combination of Sentences and XML has a distinctly dif-
ferent emphasis from conventional approaches, notable that the view is one from the top
down rather than bottom up. For example, using Sentences the approach would be that “a
sales order has many order lines” rather than “each order line belongs to a sales order”. In
our view the top-down approach is more intuitive.

• Sentences QuickStart Application Pack – this includes pre-built applications for Human
Resources, Reception Management, Technology Asset training, Library Management, Em-
ployee Share Options and Incident Tracking amongst others. And, because it is so easy to
modify or adapt Sentences applications, that these can genuinely form the basis for user ap-
plications even when these may differ significantly from the basic functionality provided.

Page 10 © Bloor Research. All Reproduction Prohibited

Sentences from Lazy Software

Summary

Sentences represents unique technology. Therein lies both its advantage and its disadvantage. On
the one hand it offers significant advantages over traditional approaches to data management
but, on the other, it will be seen as risky technology by most potential users.

At the present time, Sentences lacks the scalability to support large-scale applications. This is just
as well, as it forces Lazy Software to address niche applications within corporates, where those
enterprises are more likely to be prepared to try out new technology. This sort of softly-softly ap-
proach would seem to be a sensible strategy on the part of Lazy Software.

The bottom line, of course, is whether Lazy Software can maintain its marketing momentum. If it
can get this right (and Simon Williams’ history suggests that it can) then Sentences can, and
should, establish itself as a database technology that can and should be investigated by those
building new application databases. Of course, the ultimate accolade will be when another com-
pany wants to build a product based on the Associative Model of Data. We don’t expect that to be
long in coming.

© Bloor Research. All Reproduction Prohibited Page 11

Sentences from Lazy Software

Copyright Information

An extract from the Bloor Research Product Evaluation Series. All rights
reserved. No part of this publication may be reproduced by any method

whatsoever, without the prior written consent of Bloor Research.

Bloor Research is Europe's leading IT research and publishing organisation.
Research is available on many subjects such as Data Warehousing, RAD, 4GLs,
Development Tools, Client/Server, CASE, Software Testing, Databases, Object

Databases, Parallel Databases, Networking, Computer Hardware, IT and IS
Strategy, Desktop Strategy, Rightsizing and Object Orientation.

Bloor Research
Challenge House, Sherwood Drive, Bletchley,

Milton Keynes, MK3 6DP,
United Kingdom

Telephone: +44 (0) 1908 625100
Facsimile: +44 (0) 1908 625124

E-mail: mail@bloor-research.com

Web Site: www.bloor-research.com

