INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality ilfustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

NOTE TO USERS

This reproduction is the best copy available.

ASSOCIATIVE DATA MODEL AND

CONTEXT MAPS

MINGHUI HAN

A MAJOR REPORT
IN

THE DEPARTMENT
of

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2001

© MINGHUI HAN, 2001

I*l National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fle Votre rétérence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. Ia forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-~ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-64083-3

- Canada

Abstract

Associative Data Model and Context Maps

Minghui Han

This report presents the possibility of using context maps to represent associative data
model. This new technology for associative data model can be presented as the joined
maps (iMaps) of concepts and relationships. The solution for converting a set of context
maps into one database or retrieving information from the database to context maps was
developed. The software was developed by using VB4 (Visual Basic for Application),
which can give us access to Microsoft Office for integration with databases. The
implementation for this technology was demonstrated by using MS Excel spréadsheet to
display the associative model of data and MS Access to store a set of converted context

maps.

Acknowledgements

I wish to thank all those who made the final realization of this dissertation possible. It is
not possible to mention all their names, however I would like to express my special

gratitude to the follbwing contributors.

I am pleased to express my gratitude to Professor T. Radhakrishnan, Chair of Department
of Computer Science, for acceptance to be my co-supervisor. He made many useful
comments for this report. My thanks are extended to Prof. Peter Grogono, an examiner
for my work, for his valuable comments on this report. My thanks also go to Halina
Monkiewicz, the Graduate Program Secretary, for her support and collaboration. I am
greatly indebted to my supervisor, Prof. W.M. Jaworski, who encouraged my interest in
the subject of software information system, for his technical advice, generous attention,
constant help and critical remarks throughout this work. He patiently guided to me with
his knowledge about information systems and encouraged me in tackling various difficult

issues.

My sincere thanks are due to the support given by my company, Motorola Canada
Software Center, Montreal, Quebec, Canada. My special thanks to Gerald Dunkelman,
Operation Manager and Alf Lund, project Manager for their inspiration, encouragement

in many ways during my master program study.

Finally, I would like to express my deep gratitude to my wife, Dawei, for her all the

support and she always believe me and I can always rely on her.

iv

Contents

List of Figures i
List of Tables
1. Introduction 1
1.1 Background 1
1.2 Objective of Study 3
1.3 Project Scope 4
2. Associative Model Introduction 5
2.1 Data Model 5
2.2 Relational Model 6
2.3 Associative Model 8
23.1 General 8
2.3.2 Associative Model Structure 9
2.3.3 The Benefits of Associative Model 12

2.4 The Bookseller Example. 13
3. Context Maps 17
3.1 Context Paradigm 17
3.2 jMap Technology 17
3.3 jMap Syntax and Process 18
3.4 The Joined Map Notation 21
3.5 Associative Model Recovered with jMaps 23
4. Application Program 27
4.1 Introduction 27
4.2 Development Tool 27
4.3 Project Functions 29
4.4 General Constraints 30
5. Program User Manual 31
5-1 System Requirement 31
5-2 Start Program 32
5-3 Program Functionality. 33
5-4 Create Normalized jMap Tables. 35

5-5 Remove Tables

38

5-6 Save jMap to Database

38

5-7 Recover Database to jMap

40

5-8 Analyze Database Property with jMap

42

59 Get Help

6. Conclusion And Recommendation

6.1 General Conclusion

46

46

6.2 Recommendations for Future Works

Bibliography

47

A- Printed Materials

49

49

B- On-Line Sources

51

Appendix Source Code

A-1 User Form Source Code
A-1-1 frmBookSheetInfo

A-1-2 frmExportTablesToAccess

A-1-3 frmImportAccessToWks

A-1-4 frmWelcome.
A-2 Modules Source Code

A-2-1 MAnalysisAccessToWks

A-2-2 MColor

A-2-3 MExportTablesToAccess

A~-2-4 MImportAccessToWks
A-2-5 MRestorejMap

A-2-6 MShellExecute

A-2-7 MStartup

A-2-8 MTables

A-3 Class Modules Source Code

52

52
52
53
55
59

59
59
61
62
67
69
73
74
76

83

A-3-1 AccessTMapBuilder
A-3-2 Table

89

List of Figures

Figure 1 The Bookseller Problem in the Diagrammatic Form 16
Figure 2 Diagrams Defined by Map Patterns 20
Figure 3 Schema view of Map with Pattern 20
Figure 4 Schema of Customers and Order Associative Model represented by jMaps
24
Figure 5 Customer and Orders 4ssociative Model represented by jMap «......ceeeeeeee- 25
Figure 6 Book Seller Problem with jMap converted Associative Modelcueeseveseeeee 26
Figure 7 MS Excel Macros Enable Dialogue Interface 33
Figure 8 The Welcome Interface of ADMjMap Software 33
Figure 9 ADMjMap Menus and Test Sheet 34
Figure 10 Sheets and Book Identify Dialogue 35
Figure 11 Created cItems Table Sheet 36
Figure 12 Created cTuples Table Sheet 37
Figure 13 Normalized New Sheet 38
Figure 14 Export Tables to Access Dialog Box 39
Figure 15 Save As Dialog Box 39
Figure 16 Information Message Box for Data Export from jMap 40
Figure 17 Import Tables to Excel Dialog Box 40
Figure 18 Information Message Box for Data Import from Access 41
Figure 19 jMap Restoring Message Box 41
Figure 20 Restored jMap Results 42
Figure 21 Import Tables to Excel Dialog Box for Analysis Table Properties 43
Figure 22 The Tables Analysis Results with jMap Notation 44
Figure 23 Program Help Page 45

List of Tables

Table 1 Customers Relational Table

Table 2 Orders Relational Table
Table 3 Items Associative Table

Table 4 Links Associative Table

11
12

Chapter 1

1. Introduction

1.1 Background

There are many representations and methodologies for information systems and software
engineering, such as CASE tools and Rational Rose UML, which can be presented with

graphical notations for the information system views.

However it is a challenge to develop a methodology with safety critical systems which
needs to be simple and easy to implement. The joined maps viewed as context maps in
this report is one way to represent the above requirement. The joined maps, or jMaps, are
a notation and a method for representing systems architecture, structures, processes and
reusable templates. The jMaps can be synonyms with syntax maps. This technology was
first introduced by W.M. Jaworski [1995]. The technology was initially developed as a
means of recovering and refining knowledge from legacy system. This technology has a
history of names. During the late 1970s and early 1980s, based on conceptual graphs
introduced by J.F.Sowa [1984], it was named as ABL, or Array Based Language
(Jaworski [1987]). In the late 1980s, it was renamed as ABL/W4. W4 represents as what,
when, where and which. In the early 1990s, Prof. Jaworski [1995], by considering
existing notations and methodologies, named this technology as jMaps. In the late 1990s
until now, jMaps can be presented as Context Maps (Jaworski [1999]). With jMaps or
Context Maps technology, by using the popular concept of a spreadsheet it is feasible to

communicate the design information to different audiences. The jMaps notation allows

efficient recovery and modeling of generic schemata for processes, objects and views of

information systems.

The associative data model was developed by Simon Williams [2000]. The associative
model treats the information in the same way as the human brain, i.e. treats the things
with association between them. Those associations can be expressed through the simple
subject-verb-object syntax of an English sentence. The associative model divides the
real-world things with two kinds of sorts: Entities and Associations. According to Simon
Williams [2000], Entities are the things that have discrete, independent existence. An
entity’s existence dose not depend on any other thing. Associations are the things whose
existence depends on one or more other things, if any of those things ceases to exist, the

thing itself ceases to exist or becomes meaningless.

The associative model overcomes the limitations of the relational model and avoids the
complexities of the object model by structuring information in a more accessible and
intuitive manner than either. The associative model overcomes two fundamental
limitations of current programming practice: the need to write new programs for every
new application, and the need to store identical types of information about each instance.
It also offers a superior distributed data model, allowing one database to be distributed
over many geographically dispersed web servers. Moreover, associative databases may
be readily tailored to serve different requirements simultaneously, and different databases

may be easily combined and correlated without extra programming

By considering the basic concepts of associative data model, it becomes possible for us

to use context maps to represent associative data model.

1.2 Objective of Study

The main purpose of the research work reported herein is to introduce the new method of
using context maps to represent associative data model. Based on this new technology,
we will design ard develop a software for converting a set of context maps into one
database or retrieving data information from the database. The associative data model
will be presented as the joined maps (jMaps) of concepts and relationships in the MS

Excel spreadsheet.

The main purpose of this project is based on the associate model of information to
produce the related jMap in the form of MS Excel spreadsheet. By considering context
maps for associative data model, it is focused on using context maps to represent the
associative data model, and exporting context maps into database or recovering the data

from a database to spreadsheets in the jMaps format.

The application software was written by VB with emphasis on using Micro Office
application. Since our developing software is a small project, the MS Excel spreadsheet

and MS Access database are sufficient in using this project.

1.3 Project Scope

The research work for this project was supervised by Prof. W.M. Jaworski. The work

study was started in January 2001. The procedure to develop this project is structured in

the following way:

1)

2)

3)

4)

5)

6)

7

Try to get familiar in using associative data model, especially in understanding the
basic concepts of this new technology for representing the database model.

Analyze the basic requirements for this project. List the relationships between entities
and associations for a special example.

Do research on the jMap notation, and converting the associative model with jMaps
notations into a spreadsheet.

Project design, source coding in MS Excel by using VBA, with special emphasis on
converting a set of data into the database and restoring the jMaps from the database.
Integrate the program, and make all functions work.

A deliverables project package will contain a full description of manual, sample
Excel file and sample database file

Make a conclusion for this research work and provide recommendations for future

works.

Chapter 2

2. Associative Model Introduction

2.1 Data Model

In the database management system, we can record the existence and properties of things
in the real world. The transition from things which we want to record information into a
database relies on using a modeling system. The modeling system consists of three layers

of abstraction: a conceptual layer, a logical layer and a physical layer.

e The conceptual layer is the highest level and is more abstract than the other
layers. It describes what should the modeling system in representing things in the
real world, and sets the rules about how they may be used in the modeling system.

o The logical layer describes the logical building blocks which the database uses to
store and access data, and how to map the conceptual layer into logical layer.

e The physical layer is the lowest level which describes the physical building blocks
which exist in the computer’s memory and are stored and retrieved in its hardware
storage. The physical layer decides how the logical building blocks map into

physical layer.

In above layers, the conceptual and logical layers together make up the data model. In
this case, we can conclude that the data model is a scheme for structuring data in

databases, the logical and the physical layers together make up the database aspects.

The data model is fundamental for database management systems. According to Simon
Williams [2000], five data models have been proposed and used since computers became
available. Those five data models are: the network model, the hierarchical model, the
relational model, the object model, and the object/relational model. In the above models,
the two most significant and widely adopted models are the relational model and the
object model. Today’s database market is dominated by products based on the relational

model.

2.2 Relational Model

The relational model was first described by Dr. Edgar Codd of IBM’s San Jose Research
Laboratory in 1970. Nowadays, the relational model is the foundation of almost every

commercial database. The relational model stores data in special tables called “relations™.

In the relational model, each table holds data for a particular type of thing or entity, such
as customers, orders, students and so on. Within a table, each row represents one instance
of the type of things that the tables stores and each column represents a piece of

information that is stored.

Here is a simple example of customers and orders for which the source was taken from
Simon Willams [2000]. The customers table has columns for customer number, name, '
telephone number, credit limit, outstanding balance and so on. The Orders table has

columns for order number, date, customer number item, quantity and so on

Customers

Customer number | Name | Telephone no Credit limit | O/S balance
456 Avis 0171 123 4567 | £10,000 £4,567

567 Boeing | 0181 3456789 | £2,500 £1,098

678 CA 0123 45678 £50,000 £14,567
789 Dell 0134 56789 £21,000 £6,789

Table 1 Customers Relational Table

Orders

Order no | Date Customer number | Item Quantity
11234 2-Mar-99 567 ABC345 | 150
11235 15-Mar-99 789 GGI765 25
11236 21-Apr-99 789 K1MO012 | 1,000
11237 7-May-99 456 GHJ999 | £6,789

Table 2 Orders Relational Table

Within each table, rows are uniquely identified by one or more special columns called
primary keys. The relationship between an order and the customer who placed it is
recorded by putting the customer’s number into the “customer number” column of the
order’s row in the Orders table. This is an example of a foreign key. The foreign keys in

table are shown in bold.

The relational model is the standard architecture for the database management systems.
However it has some fundamental limitations such as the following:
e Each new relational database application requires a new set of programs. So the

cost of application software increases.

e The relational database applications are difficult to customize for individual users.
e A relational database can not record a piece of data about a particular thing that is
not relevant to all others of same type.

e Itis difficult and sometimes not possible to combine two relational database.

2.3 Associative Model

2.3.1 General

The Associative Model is the first major advance beyond the Relational Model. The
Associative Model of Data is the name given by Simon Williams [2000] to the set of
concepts, structures and techniques underlying the Senfences database management
system. The Sentences(TM) is an innovative database management system written in the
Java language and based on the Associative Model of Data. The associative model builds
on a body of academic research that includes: semantic networks, binary-relational
techniques and the entity relationship model. We have added several important and

unique concepts.

The associative model sees information in the same way as our own brains: as things and
associations between them. These associations are expressed through the simple subject-
verb-object syntax of an English sentence. For example:

The lake is coloured blue

Sherry is sister to Jim

Lee has a credit limit of $5,000
Montreal is located in Province of Quebec

A sentence may itself be the subject or object of another sentence, so the associative

model can express quite complex concepts:

(Flight BA123 arrives at 20:15) on Monday
The Bible says (God created the World)

For previous Customers relational table, the sentence in the associative model can be

described as following

Avis is a Customer

Avis has telephone number 0171 123 4567
Avis has credit limit £10,000

Auvis has outstanding balance of £4,567
Boeing is a Customer

Boeing has telephone number 0181 345 6789
Boeing has credit limit £2,500

Boeing Aas outstanding balance £1,098

...and so on.
2.3.2 Associative Model Structure

According to Simon Williams [2000], an associative database comprises two data

structures:

e Items, each of which has a unique identifier, 2 name and a type.

e Links, each of which has a unique identifier, together with the unique identifiers

of three other things, that represent the source, verb and target of a fact that is

recorded about the source in the database. Each of the three things identified by

the source, verb and target may each be either a link or an item.

The following example shows how the associative model would use these two structures

to store the piece of information.

Example sentence:

“Flight AC1234 arrived at Montreal Doval on 12-Aug-2001 at 10:25am”.
In the above sentence, we could divide seven items with:
the four things:

Flight BA1234,
Montreal Doval,
12-Aug-2001
10:24am

and the three verbs or prepositions

arrived at
on

at.
In this case, we need three links to store the data. They are:

Flight AC1234 arrived at Doval Airport
... on 12-Aug-2001
... at 10:25am

We can see that each line is one link. The first link uses “arrived at” to associate Flight
AC1234 and Doval Airport. The second link uses “on” to associate the first link and 12-

Aug-2001. The third link uses “at” to associate the second link and 10:25am.

10

We can simply put brackets around each link. Written this way, our example would look

like this:
((Flight BA1234 arrived at Doval Airport) on 12-Aug-2001) at 10:25am

This may look more like human language than the contents of a database, but if we chose
for a moment to view the associative model through the eyes of the relational model, we
see that any associative database can be stored in just two tables: one for items and one

for links. Each item and link has a meaningless number to act as its primary key.

Items

Identifier | Name

01 Flight AC1234
02 Montreal Doval
03 12-Aug-2001
04 10:25am

05 arrived at

06 On

07 At

Table 3 Items Associative Table

Links

Identifier | Source | Verb Target

11 01 05 02

11

12 11 06 03

13 12 07 04

Table 4 Links Associative Table

2.3.3 The Benefits of Associative Model

The associative model has following advantages:

e One program can be used to implement many different applications without being
altered or rewritten in any way. The associative mode allows users 1o create new
applications from existing ones. This will significantly reduce the costs of

software development.

e By using the associative model, applications can permit features to be used or
ignored selectively by individual users without the need for complex parameters

or customisation.

e A database can record information that is relevant only to one thing of a particular

type, without demanding that it be relevant to all other things of the same type.

e Separate databases can be readily correlated or merged without extra
programming, and multiple databases distributed across many servers can be

accessed by applications as though they were a single database.

12

2.4 The Bookseller Example

In this section, we will describe the bookseller example to look at the more sophisticated
problem and to show how the associative model deals with this problem. The example
was taken directly from Simon Williams [2000]. This example will be also represented

by context maps in later chapter.

The domain of bookseller problem as described following:

An Internet rztail bookseller operates through legal entities in various
countries. Any legal entity may sell books to anyone. People are required
to register with the legal entity before they can purchase.

For copyright and legal reasons not all books are sold in all countries, so
the books that each legal entity can offer a customer depend on the
customer’s country of residence.

Each legal entity sets its own prices in local currency according to the
customer’s country of residence. Price increases may be recorded ahead
of the date that they become effective.

Customers are awarded points when they buy, which may be traded in
against the price of a purchase. The number of points awarded for a given
book by a legal entity does not vary with the currency in which it is
priced.

With associative data model, the schema that describes the structure of orders for this

problem is as follows. The items in bold are entity types.

Legal entity sells Book
... worth Points

... in Country

... from Date

... at Price

Person lives in Country

13

Person customer of Legal entity
... has earned Points

... orders Book

... on Date

... at Price

In above data itself, the items in italics are entities. Now we define the group of them that

we are using; two legal entities, two books, two customers and two countries:

Amazon is a Legal entity
Bookpages is a Legal entity
Dr No is a Book

Simon Williams is a Person
Simon Williams lives in Britain
Mary Davis is a Person

Mary Davis lives in America
Britain is a Country

America is a Country

Spycatcher is a Book

Next comes the price list:

Amazon sells Dr No
.. worth 75 points
.. in Britain
.. from I-Jan-00
..at£10
.. in America
.. from I-Mar-00
..at 816
Amazon sells Spycatcher

14

... worth 50 points
... In Britain

... from I-Jun-00
...at£7

... in America

... from I-Jun-00
... worth 35 points
... In Britain

... from I-Jan-00
...at£8

... 1n America

... from I-Jan-00
...at 814
Bookpages sells Spycatcher
... worth 35 points
... 1t America

... from I-Jun-00
...at 813

Here, for each of our two customers we record the number of points awarded to date,
together with a single order:

Simon Williams customer of Bookpages
.. has earned 1,200 points
.. orders Dr No
.. on 10-Oct-00
..at£10
Mary Davis customer of Amazon
.. has earned 750 points
... orders Spycatcher
.. on 19-Oct-00
..at 312

15

Here is the metadata for the bookseller problem in diagrammatic form. The ovals
represent items; the lines represent links. The circles on the lines are the anchor points for

links between items and other links.

Person customer of

fromthe price of
date of

Figure 1 The Bookseller Problem in the Diagrammatic Form

Comparison with associative model and relational model, the associative schema usually
take much less lines that record the same data as relational model requires to store an

equivalent database.

16

Chapter 3

3. Context Maps

3.1 Context Paradigm

From the source of Dr. Jaworski at the website of www.gen-strategies.com, Context maps
introduces the concept of creating style sheets to control knowledge-based information
access and navigation. Context maps enable us to create virtual information maps for the
information system. In a technical sense, Context maps describe what an information set
is about, by formally declaring topics, and by linking the relevant parts of the information

set to the appropriate topics.

Context tﬁple is a generic association of set members cast in roles. In the extended
spreadsheet a column of roles and the related set members define context tuple. From the
graphical view, context tuple, in fact, is represented by a compound edge and the
connected compound nodes. A directed edge object consists of tail object, middle object
and head object. Context can be defined by an aggregation of context tuples. While
context tuples represents action-able system behaviors, processes, tasks, procedures or

programs. The aggregated context tuples will form a context map.

3.2 jMap Technology

17

The joined maps or jMaps is a notation and method for representing systems architecture,
structures, processes and reusable templates. This technology was first introduced by Dr.
WM. Jaworski [1995]. The technology was initially developed as a means of recovering
and refining knowledge from legacy systems. By using the popular concept of
spreadsheet structure, it is feasible to describe and process conceptual information. The
jMaps notation allows efficient recovery and modeling of generic schemata for processes,

objects and views of information systems.

jMaps represents the knowledge in a spreadsheet format with the relationships
represented by vertical fuples/columns. Connecting the words jointed and map produced
the term “Map”. The jMaps represent the relationship between different information
nodes and provide functionality of arrays, graphs, relational tables, etc. The ‘j” stands for
Jjointed, because a jMap can be a collection of different information connected together in
a strong logical way. By that we mean that you can manipulate the logical query to get

the specific information that you seek from the map.

3.3 jMap Syntax and Process

The syntax of jMaps is based on the Relationship Oriented paradigm, or on relating sets
and set members. InjMaps the relationships are represented by (vertical) tuples/columns.
The kTuple (knowledge tuple) construct is the fundamental structure defined by the

concepts and instances related by roles.

18

The relating mechanism is implemented by allocating roles to sets in schema and their
instance to set members/instances in map. Compared to diagrams, maps are very
compact, offering a rich context within limited space of a computer screen. Maps are
created or edited within an organized electronic page — spreadsheet which assures

efficient manipulation of relationships (columns) and heavy reuse of components (row).

Figure 2 (source from W.M.Jaworski) demonstrates associations of descriptor strings to
arcs and nodes. The character “f” (“t”) associate the strings to the “tail” (“head’) of an
arc. The character “m” signifies that the string is attached to the “body” of arc or node.
Clustering of arcs - and connected nodes - into graphs is shown by tagging columns with
character “&”. Graphs are connected if they share at least one node. As is illustrated by
graph (A) and (B), reordering of columns and/or rows is an information-preservation
operation, i.e. the shape of the graph might change but not the meaning. Descriptors of
arcs and nodes are set members. Sets are identified by {<set name>} and are defined by
enumeration. The schema-level view of a map is obtained first by hiding set instances
and then by hiding redundant columns (Figure 3). The schema provides information

about joined maps ({Maps) structure and size.

(A)::=(2)&(b)&A(c)
Ai Ai Ai 3: 1:{Graph} network with descriptors
&: &: &: 3 {A} .
M: M: M: 3: 3 :{Arc} — Stringl
m 1 Smf'g&
m 1 strings m: string5 m: string 6
m. 1: _srinch :
FiFiF:3:3{Nods — String?2]
t:f:2 stringl m: string4
t: f:t:3 string2
f t:2 shing3 ——— |

19

Figure 2 Diagrams Defined by Map Patterns

In Figure 2, for the diagrams on the right side, we can have the map as shown on the left
side of figure. Map with Patterns contains three sets namely {Graph}, {Arc}, and
{Node}. There are three roles namely 'A', 'M' and 'F" and four instance roles namely ‘&',
'm', 'f and 't. Role 'A’ was allocated to {Graph} to allow clustering of columns (i.e.
relationships of instances) with instance role '&'. Role 'M' was allocated to {Arc} to
allow allocating of instance role 'm' to the instances 'string4', 'string5' and 'string6'. Role
'F was allocated to {Node} to allow allocating the instance roles 'f and 't' to the

members/instance of these sets.

AiAiA:i3:1:{Graph}
&:&:&:3 {A}
 M:M:M: 3: 3 :{Arc}
F:F:F:3:3:i{Node}

Figure 3 Schema view of Map with Pattern

If we need to develop large jMaps models, we can hide irrelevant columns and rows,

editing visible cells and inserting new columns and new rows.

In general, abstract concepts appear on the right of the map in bold and between curly
brackets. They can be thought of as a heading of a table column or a row. The instances
would then be the actual contents listed in the table. Each column is to be read vertically
using the syntax that was described above. For every “variable” you come across when

reading down a column, you must read across towards the right of the map, to see which

20

concept or instance the variable is referring to. Beside each instance, and under the total

number of instances, represents the number of times the instance 1s referred to.

3.4 The Joined Map Notation

jMap notation can addresses many topics such as following:
e Information system architecture
e Recovery and reuse of system patterns
e Evolving information systems
e Software evaluation and renewal
e Systems workstations
e Automation of system design

e Modeling of web sites and knowledge hubs

Following are explaining for some jMap notations

e The concepts could be one of the following:

A - Template Aggregation

T — Template

Y — Dominant

Z — Descriptive

K- Identifier

O — Identity

H -~ Hierarchy

I - Generalization - "parent" or "heir"
P - Aggregation - "whole" or "part"

21

U - Uses or used

D - Dependence

S - Sequence - position in a sequence
F - Flow "from" or "to"

L - Flow "from", "to" and "loop"
X - Unique Qualifier

M - Association

G - Guard or Goal

E - Event

V - Value

? - User defined

o The different instances that exist for the concepts:

1 ... * - identifier or value
0 - column marker

h - tree root
1...*-branch

f- from:

t-to:

b -both

m - many or middle:

d - destination:

s - source:

1-1loop

a - assertion

e - exception

X - unique row marker
v - related

¢ - composite

t-true

f- false

o - otherwise

t - implied true
f— implied false
e— enabled

d - disabled

? - user defined
G - update

3.5 Associative Model Recovered with jMaps

We will go back to earlier Customer and Order tables (Table 1 and Table 2) and convert
associative model data to jMaps. Rewriting of the associative model with jMaps should
be done by performing of the following activities:
1) Identify component types i.e. identification of sets by name.
2) Enumerate sets and identify connector types
3) Create connectivity columns/map by “connecting' components with characters “f”
and “t”.
4) Use “M” to identify association. Enhance connectivity columns by using
characters “m” to represent association between the attributes
5) Use characters “v” to stress uniqueness/identity of an entity.
6) Use characters “F” to identify columnwise for the sets with members connected
by “f’ or “t™.
7) Create schema view by first hiding set members and then hiding redundant

columns.

Products of the process for this example, i.e. relevant jMaps and schema are shown in

Figure 4 and Figure 5 .

For more complex example as described in earlier Book Seller problem, Figure 6 shows

recovered associative model with relevant jMap and schema.

{View}

ADM

>|<i>

»|<|>

{Entity}

<|»|<|>»

<|pl<|»

<|>»|<|>

<|p|<i»

Customers

Orders

{Customer number}

{Name}

{Telephone no}

{Credit limit}

mimimimm

n|w|nnn

mimimimmm

mimjimnimm

{O/S balance}

{Order number}

{Date}

{item}

{Quantity}

|||

Xyn|mim|m

Z|m|nim|m

2|n|m|m|m

ol a)bb|)b 0O]0]0

I S I I E BRI

{Association}

Figure 4 Schema of Customers and Order Associative Model represented by jMaps

24

4 |{Telephone no}
020 7123 4567
020 8345 6789
0123 45678
0134 56789

4 |{Credit limit}
£10,000
£2,500
£50,000
£21,000

4 |{O/S balance}
£4,567

£1,098
£14,567
£6,789

{Order number}
11234

11235

11236

11237

4 |{Date}
02/03/1999
15/03/99
21/04/99
07/05/1999

4 |{item}
ABC345
GGI765
KLMO12
GHJ299

4 ({Quantity}
150

25

1000

50

1 [{Association}
has/is

~|m

n
m
m
olalalalajalala]alalalalalajalala]a]aialalalalala]aja]ajala|alafala]a]a|ala]a]a]ain]ew
H

Figure 5 Customer and Orders 4ssociative Model represented by jMap

s g0 8
R21C66
61 } id {
vivivivivivl vivivivivliviwlvivlvliviv vlvieiv!6l {tnternet retad bookseler i
v | i 1 _{"Sentences”
viviviv H 4 [T I !
v : 1 |_isa Estity type i
v x V1 _isaEatiey] i
il i ; 1 :—isaBatatype
e = * 11 _izaVerb - copeia
i vivivivie vivivlvivivlelevivie 118 Schema
I 1t vi 129 Prioe st
; ! ! vii2 Customes transactions
L O] V00 00OV O oA B | | I [B[DDA M G M T B M [68 | 11 | {Assooiationd
! m| 112 isels
{] 13 worth
i = 7 in
7 from the date of
12 tthe pioe of
mi 4 fvesin
H customer of
! { € haseaned
! i ? ordets
| : i | 7 oathe date of 1
| { 8 isa i
wl| i |1 IR | ! } j 14 % |

Figure 6 Book Seller Problem with jMap converted Associative Model

26

Chapter 4

4. Application Program

4.1 Introduction

This project deals with the recovery of the information structure knowledge from
database, to generate the jMap (in the background) and then launches MS Excel with the
resultant map. The program runs only on computers equipped with MS Excel. The
subsequent reuse of this recovered knowledge can be represented as associative data
model. The central element in the process of information manipulation is based on the

jMap formal notation technology.

The program will provide the user with a number of options including the options to
recover information from the database, and the options to normalize jMap sheet to save
into the database. A comprehensive on-line help about what each of these options mean

will be provided. For users seeking more detailed sample will also be provided.
4.2 Development Tool
The development tool is described as the follows: (most are members of the Microsoft

family of products)

e Microsoft Excel:

27

Excel is a spreadsheet that allow you to organize data, complete calculations, make
decisions, graph data, develop professional-looking reports, convert Excel files for

use on the database, access the database.

The three major parts of Excel are:

1) Worksheets, that allow you to better calculate, manipulate, and analyze data
such as numbers and text (the term worksheet means the same as
spreadsheet.).

2) Charts, that pictorially represent data. Excel can draw a variety of two-
dimensional and three-dimensional charts.

3) Databases, that manage data. For example, once you enter that data, you can

search for specific data, and select data that meets the criteria.

e Microsoft Access

Microsoft Access is a database which makes difficult database technology accessible
to general business users. Microsoft Access ensures that the benefits of using a
database can be quickly realized. With its integrated technologies, Microsoft Access is
designed to make it easy for all users to find answers, share timely information, and

build faster solutions.

Microsoft Access has a powerful database engine and a robust programming

language, making it suitable for many types of complex database applications. For

small project, to chose Microsoft Access is suitable to store the data information.

28

e VBA
A Visual Basic Application can provide us with the means to accomplish a wide
range of the programmatic results. With VB4, we can create full-fledged custom

applications in Microsoft Excel.

Visual Basic support a set of objects that correspond directly to elements in
Microsoft Excel. Every element in Microsoft Excel, such as workbook, worksheet,
chart, cell, and so on, can be represented by an object in Visual Basic. By creating

procedures that control these objects we can automate tasks in Microsoft Excel.

4.3 Project Functions

One of the main features needed for this project is the seamless nature of its operation.
This entails minimum work by the system’s user. The main system’s functions as seen
by the user can be summarized as:

1) Providing a mechanism through which the user can handle operation

2) Providing a mechanism for the user to enter his/her selected options,

3) Providing context-sensitive help,

4) Providing a visual indicator for the user to know the process’ progress, and

5) Seeing the resultant jMap in MS Excel.

The system has more functions that are done in the background. These include:

29

1) Create the Unique Ids for each Context Tuple (aka Column ID) and Context
Item (aka Set X Member ID), then introduce Unique IDs for each of Sets,
Members, Spreadsheets, Workbooks, Tuples, Chapters, DBs etc.

2) The identifier is a surrogate, that is automatically assigned by the system.

3) Enable new item data be grouped into two tables: cTuple and cltem, and then
could be saved into the database.

4) For obtained information from database, extracting and then refining the those
data needed for the jMap generation.

5) Generating the associated data model jMap with the needed features, and
launching MS Excel with the resultant jMap.

6) For both directions: database convert to jMap or jMap to Database, it will be
taken care about the larger data with constrain of few spreadsheets and few
workbooks

7) Query database and display results as jMaps.

4.4 General Constraints

The software is constrained only to run MS Windows operating system (WIN NT or

WIN95/98/2000). The user also needs to know basic operations of MS Excel.

30

Chapter 5

5. Program User Manual

This manual concerns the extraction of an associative data model information and
conversion of the selected information to and represented in jMap notation. The jMap is
based on the Excel spreadsheets. Therefore, it is necessary for users to have elementary

Excel knowledge.

The syntax, schema, maps, and styles of jMaps are protected by copyright and trade
secret law and may not be disclosed, used or produced in any manner, or for any purpose,

except with written permission from Dr. W. M. Jaworski.

5-1 System Requirement

Before you try to run this program, you need check if your system meets following

Tequirements:

Hardware:
Pogrom shall operate with the following hardware requirements:
e CPU 486 or later
e Monitor — SVGA (800x600) or latter
e RAM-16MB

e Mouse or equivalent pointing device

31

Software:
You have to set up the following software in your machine
e Microsoft Excel
e Microsoft Access

e Visual Basic

Platform:
The program can run on the following platforms
e Windows 95
e Windows 98SE
e Windows NT

e Windows 2000

5-2 Start Program

In the software package, soon after open ADMjMap.xls file, there will be a Microsoft

Excel popup dialogue as shown in following:

32

Figure 7 MS Excel Macros Enable Dialogue Interface

Click Enable Macros button to open the file, if you select Disable Macros button, then
you will be unable to run the Macros in the program. After Enable Macros button is

clicked, it will show following Welcome Interface:

Figure 8 The Welcome Interface of ADMjMap Software

By clicking any area of welcome interface, you will hear one beep sound, after that the

ADMjMap Excel file is ready to use.

5-3 Program Functionality

After ADMjMap is opened and is ready to use, you will find there is a jMap test sheet in
the book. This test sheet is just for user to test the program’s functionality. In Figure 9,
you will find that a menu bar named ADMjMap has been created. When open this menu,

as we can see, there are six operation sub-menus:

33

e Create Tables——to create the new sheet with generated ID for Sets, Members,
Spreadsheets, and Workbooks.

e Remove Tables ——to remove the created sheets of {cItem}, {cTuples} and all
sheet name which have brace {} covered will be removed

e jMap->DB -——to save the created tables to Access Database

e DB->jMap ——recover tables information from the Access Database with
formatted jMap notation to the new sheet

e DB jMap Analysis ~——analyze data tables from Database to produce the jMap
results

e Help -——to get help information for using this program

N\ Microzolt Excel - ADMMap s

relulufafulsinlslvlu]< lolulole
v

L1

Figure 9 ADMjMap Menus and Test Sheet

34

5-4 Create Normalized jMap Tables
On the top menu "ADMjMap", by clicking "Create Tables".
e You will be asked to select sheet ID and book ID from a given Combo Box

interface.

Figure 10 Sheets and Book Identify Dialogue

e Based on Normalized information from original active sheet, the program will
create two tables which present as cltem and cTuple properties.

e It will create a new sheet name as: "< + "Original Sheet Name" + > ". This
new sheet will present generated ID for Sets, Members, spreadsheet and
workbook from the original sheet. The two tables will be in two new created
sheet named as: {cItem} and {cTuples.

e If two sheet tables already exist, the created sheet name will be changed to
{cltem}1 and {cTuples}1, or {cItem}2 and {cTuples}2, and so on. As the
same, new sheet name for generated ID for Sets, Members, spreadsheet and

workbook, if it exists, its name will also be updated with increasing number.

35

Figure 11 shows the created new cltem sheet based on generated ID for Sets, Members,
spreadsheet and workbook from original sheet. Figure 12 also shows the results of new

cTuple sheet normalized from original sheet.

\ Microzolt [zcel - ADMMap 1is
T

Figure 11 Created cItems Table Sheet

36

ma ChuplelD

Figure 12 Created cTuples Table Sheet

Figure 13 shows normalized new sheet for original sheet in which the new sheet has been

generated ID for Sets, Members, spreadsheet and workbook. This sheet information will

be ready for creating the cltems and cTuple tables.

37

<Test Sheet>

Figure 13 Normalized New Sheet

5-5 Remove Tables

On the top menu "ADMjMap", by clicking "Remove Tables", the created sheets of

{cItem}, {cTuples} and all sheet names with {}or <> covered will be removed.

5-6 Save jMap to Database

On the top menu "ADMjMap", by clicking "jMap->DB", it will display a dialog box

allowing the user to save the created tables to Access Database.

38

Export Tables to Access

Figure 14 Export Tables to Access Dialog Box

In Figure 14, by clicking Save As button, the program will show following dialog box
with default file name, if select Save button, the cltem Table and cTuple Table will be
saved to Access Database. User can change the file name. If file name already exists, the
tables information will be still added into this database in a changed table name as

Figure 15 Save As Dialog Box

After the database file has been saved, the following message box will inform the user

that the file has been saved.

39

Figure 16 Information Message Box for Data Export from jMap

If check box “Open Access after Export” has been checked in the Export Tables to
Access Dialog Box (see Figure 14), after Database File has been saved, computer system

will automatically open the Microsoft Access for user to review the saved information.

5-7 Recover Database to jMap
On the top menu "ADMjMap", by clicking "DB->jMap", it will display a dialog box
allowing the user to customize for recovering Database to jMap.

import Access Tables to Excel

Figure 17 Import Tables to Excel Dialog Box

In Figure 17, after by clicking Select All button or check selected Table, with clicking

OK button, the program will load the cltem Table and cTuple Table data to Excel

40

importing in different sheets. When it has been finished import Tables to the sheet, the

following message box will display the file from the path has been import to Excel

Figure 18 Information Message Box for Data Import from Access

At end, the program will display a pop-up message box which will ask user if user wants
to convert table information to jMap. Click Yes button, it will restore the jMap into the
sheet.

Figure 19 jMap Restoring Message Box

41

5-8 Analyze Database Property with jMap

On the top menu "ADMjMap", by clicking "DB jMap Analysis", computer system will

display a dialog box allowing the user to select a Table for analysis.

42

Figure 21 Import Tables to Excel Dialog Box for Analysis Table Properties

In Figure 21, after by clicking Select All button or check selected Table, with clicking
OK button, it will analysis the saved tables information from the Access Database to

produce the jMap results

43

N\ Macrozolt Fxeal - ADM M. X3

5-9 Get Help
On the top menu "ADMjMap", by clicking "Help", the program will open a help HTML

web page for user to get help. Figure 20 shows this help page.

3 ADMMap - Mcsmolt lntetnel L

i User Manual for Associative Model jMap Program
Master Report Project

__. Blefore vou try to run this crooram. vou have jo set uo
3 el NG

Figure 23 Program Help Page

45

Chapter 6

6.

Conclusion And Recommendation

6.1 General Conclusion

The following conclusions are drawn from the results of this study:

1)

2)

3)

4)

5)

The associative model views the information in the same way as the human brain, i.e.
treats the things with association between them. Those associations can be expressed
through the simple subject-verb-object syntax of an English sentence.
The associative model is simple. It overcomes the limitations of the relational model
and avoids the complexities of the object model by structuring information in 2 more
accessible and intuitive manner than either of the other model.

Context maps enable us to create virtual information maps for the information system.
Joined maps - jMaps are a notation and method for representing systems architecture,
structures, processes and reusable templates. The jMaps notation allows easy
recovery and modeling of generic schemata for processes, objects and views of
information systems.

jMaps syntax is simple and robust. jMaps models are pattern rich, allow users to
specify, query and control the model views. Different views are generated
algorithmically to be useful for compilers or end users

The associative data model can be presented as the joined maps (jMaps) of concepts

and relationships using the popularly available MS Excel spreadsheet.

6) An application program was developed by considering confext maps for associative
data model. This program can present context maps exported into database or
recovery data from a database to spreadsheets with jMaps notation which represented
as the associative data model.

7) The application program can also treat any standard jMap sheet to convert jMap into

a database system.

6.2 Recommendations for Future Works

From the results of this study, it is noted that there are still more detail works need to be
carried out for improving use the application program. The following are recommended

for future enhancement.

1) There is much future work in implementation of joined maps for dealing with
complex systems. Future work is expected to lead to a better and more complete
theory of Context Maps.

2) A more complete application program to convert jMaps into Database, or from
Database to jMaps, needs to be developed.

3) In developed application program, to query different tables and data types from
Associative Model database is necessary for future work.

4) For a larger data jMap sheet, it really takes time to get results in running the current
program on a PC. It is necessary to improve program-running speed.

5) Designing of more user-friendly interface is yet another work needs to be done.

47

6) For large amounts of data, using Excel as a repository of jMaps has its limitations.
Only 256 columns are available in the Excel. Although to some extent this project has
considered this issue, to develop more efficient method for storing "context tuples” is

necessary.

48

Bibliography

A- Printed Materials

1) Grady Booch, James Rumbaugh, Ivar Jacobson, “The UML User’s Guide”,
Addison Wesley, 1998.

2) Derek Coleman, etc., “Object-Oriented Development: the Fusion Method”, Prentice-
Hall, Inc., 1994.

3) Minghui Han, etc., “jMapper, Web-Page jMap Generator For Key words and
Keyphrase”, Concordia University, COMP657, 2000.

4) Minghui Han, “jMapper, Web-Page jMap Generator For Key words, Keyphrase and
XML tree view, Version 2.0”, Concordia University, COMP695, 2000.

5) W.M. Jaworski, “Comp 457/657 Course Notes”, Concordia University, 2000.

6) W.M. Jaworski, “Maps: Conceptual Spreadsheets for Data and Knowledge”,
Warehousing, 1995.

7) W.M. Jaworski, “System Analysis and Design in the Classroom: InfoMAPs
Teaching Factory”, Modeling and Simulation Conference, Pittsburgh, Pa.,May 3-4,
1990.

8) W.M. Jaworski, “Michailidis A. A., Recovery and Enhancement of System Patterns:
InfoSchemata and InfoMaps”, NATW94, University of Massachusetts - Lowell,
Massachusetts, June 1994.

9) W.M. Jaworski, “Conceptual Spreadsheets for Data and Knowledge Warehousing”,
ATW9S - USA 1995, University of New Hampshire, Durham, New Hampshire, May

31 - June 1, 1995.

49

10) W.M. Jaworski, “Cooperative Engineering Issues by Examples: Mapping of Mil498
and NSDIR with jMaps™, ATW96-USA 1996, Electronic Systems Center, Hanscom
Air Force Base, August 6-9, 1996.

11) WM. Jaworski, “Representing Processes, Schemata and Templates with jMaps”,
Expanded version of the paper presented at Conference on Notational Engineering
(a.k.a. NOTATE96), The George Washington University, Washington, DC., May 23-
25, 1996.

12) W.M. Jaworski, Michailidis A. A., “Recovery and Enhancement of System Patterns:
InfoSchemata and InfoMaps”, ATW ‘94, University of Massachusetts - Lowell,
Lowell, Massachusetts, June 1994.

13) W.M. Jaworski, “InfoMaps: Conceptual Spreadsheets for Data and Knowledge
Warehousing”, ATW '95, University of New Hampshire, Durham, New Hampshire,
June 1995.

14) W.M. Jaworski, et al. “The ABL/W4 methodology for system modeling”, System
Research Journal 4(1),23-37, 1987.

15) W.M. Jaworski, et al. “Representing processes, schemata and templates with

JjMaps™, Semiotica 125(1/3), 229-47, 1999.

16) W.M. Jaworski, “Representing System Schemata and Templates with jMaps”,
NOTATE'96, George Washington University, Washington, D.C., May 23-25, 1996.
17) James Rumbaugh, etc., “Object-Orinted Modeling and Design, Prentice-Hall, Inc.”,

1991.
18) Ian Sommerville, "Software Engineering”, Addison-Wesley, 5% edition, 1995.

19) Simon Williams, “The Associative Model of Data”, Lazy Software, 2000.

50

B- On-Line Sources

1)
2)
3)
4)

General Strategies Inc. http://www.gen-strategies.com

Lazy Software, http://www.lazysoft.com

Lazy Software, http://www.associativemodelofdata.com/

Concordia University, Thesis preparation and thesis examination regulations,
http://www-gradstudies.concordia.ca/SGS_WWW/publications.html

Rob Kremer, A Concept Map Meta-Language,
http://www.cpsc.ucalgary.ca/~kremer/dissertation/index.html

Joseph D. Novak, The Theory Underlying Concept Maps and How To Construct

Them, http://cmap.coginst.uwf.edu/info/printer.html

51

Appendix Source Code

The program was coded by using VB language, the project consists of three parts: user
forms, modules and class modules
e A user form contains user interface controls, such as command buttons and text
boxes
e A module is a set of declarations followed by procedures—a list of instructions
that a program performs.
e A class module defines an object, its properties, and its methods. A class module

acts as a template from which an instance of an object is created at run time.

A-1 User Form Source Code

The source code for User Form includes as following created forms:

frmBookSheetInfo
frmExportTablesToAccess
frmImportAccessToWks
frmWelcome

All source code in above forms are listed as following:
A-1-1 frmBookSheetInfo

Option Explicit

Private Sub CancelButton_Click()
On Error Resume Next

Unload Me

End Sub

Private Sub OKButton_Click()
Dim varBookID As String
Dim varSheetID As String

varBookID = ComboBox_Book.value
varSheetID = ComboBox_Sheet.value

52

Call MTables.CreateID(varSheetID, varBookID)
Call MTables.CreateTables

If MStartup.bjMaptoAccess = True Then

frmExportTablesToAccess.Show

End If
Unload Me
End Sub
Private Sub UserForm_Initialize()
Dim varCounter ' Declare variables.
For varCounter = 1 To 100 * Count from 1 to 100.
ComboBox_Book.AddItem varCounter * add the Counter number for Book.

ComboBox_Sheet .AddItem varCounter ' Add the Counter number for Sheet
Next varCounter

End Sub
A-1-2 frmExportTablesToAccess

*Purpose: this form allows the user to select the worksheets from the active
' workbook to export to access

Option Explicit

Private colSheets As Collection
Private blnOpenADBM As Boolean
Private blnSaveAsClicked As Boolean

Public Property Get SaveaAsClicked() As Boolean
SaveAsClicked = blnSaveAsClicked
End Property

Public Property Get OpenADEBM() As Boolean
OpenADEM = blnCpenADBM
End Property

Public Property Get SelectedSheets() As Collection
Set SelectedSheets = colSheets
End Property

Private Sub EnableOKAsNecessary()
Dim IlngItemCurr As Long

cndSaveAs.Enabled = False
cmdOK.Enabled = False
With lstTables
For lngItemCurr = 0 To .ListCount - 1
If .Selected{lngItemCurr) Then
cmdSaveads.Enabled = True
cmdOK.Enabled = True
End If
Next lngItemCurx
End With

End Sub

Private Sub chkOpenaADBM_Click()
If chkOpenADBM.value = -1 Then
blnOpenADEM = True
Else
blnOpenADBM
End If

False

End Sub

Private Sub cmdCancel_ Click()
On Error Resume Next

Set colSheets = Nothing
MTables.RemoveTables

Unload Me

End Sub

Private Sub cmdResetAll_Click()
On Error Resume Next

ChangeSelection (False)
End Sub

Private Sub cmdOK_Click()
Dim lngItemCurxr As Long

If txtaDBEMName = "" Then
MsgBox "Access Filename(*.mdb) must be entered", vbExclamation, "Error"
Exit Sub

End If

If UCase(Right (txtADBMName, 4)) <> ".MDB" Then
txtADBMName = txtADBMName + ".mdb*
BEnd If

Set colSheets = New Collection

With l1lstTables
For lngItemCurr = 0 To .ListCount - 1
If .Selected(lngItemCurx) Then
colSheets.Add .List(lngItemCurx)
End If
Next lngItemCurr
End With

MExportTablesToAccess.Export txtADBMName
MTables.RemoveTables

Set colSheets = Nothing
Unload Me

End Sub

Private Sub ChangeSelection(ByVal Selected As Boolean)
Dim lngItemCurr As Long

On Error Resume Next

With 1lstTables
For lngItemCurr = 0 To .ListCount - 1
.Selected(lngIltemCurr) = Selected
Next lngItemCurr
End With

End Sub

Private Sub cmdSaveaAs_Click()
‘Defines the variable as a variant data type
Dim X As Variant

‘Opens the dialog
X = Application.GetSaveAsFilename(, "MDB Files (*.mdb), *.mdb", 2, "Save As")

54

If X <> False Then

txtADBMName.Text = X
blnSaveasClicked = True
End If

txtADEMName . SetFocus
End Sub

Private Sub cmdSelectall_Click()
On Error Resume Next

ChangeSelection (True)
End Sub

Private Sub lstTables_Change()
EnableOKAsNecessary

End Sub

Private Sub lstTables_Click()
EnableOKAsNecessary

End Sub

Private Sub UserForm_Initialize()
Dim Wks As Worksheet

chkOpenaADBM.value = 0
blnOpenADBM = False
cmdSaveAs .Enabled = False
blnSaveaAsClicked = False
cmdOK.Enabled = False
txtADBMName.Text = "*"
lstTables.Clear

For Each Wks In Worksheets
If Wks.type = x1iWorksheet Then
If Wks.Visible Then
If InStr(wks.Name, “{") Then
lstTables.AddItem (Wks.Name)
End If
End If
End If
Next Wks

Dim lngItemCurr As Long
On Error Resume Next
With lstTables
For lngItemCurr = 0 To .ListCount - 1
.Selected(lngItemCurr) = True
Next IngItemCurr
End With

End Sub

A-1-3 frmImportAccessToWks

' Purpose: this form allows the user to specify an access database and choose
' which tables to import from access

Option Explicit

Private colTables As Collection

55

Private blnBrowseClicked As Boolean

Public Property Get BrowseClicked() As Boolean
BrowseClicked = blnBrowseClicked
End Property

Public Property Get SelectedTables() As Collection
Set SelectedTables = colTables
End Property

Private Sub EnableOKAsNecessary()
Dim IlngItemCurr As Long

cmdOK .Enabled = False
With lstTables
For lngItemCurr = 0 To .ListCount - 1
If .Selected(lngItemCurr) Then
cmdOK.Enabled = True
End If
Next lngItemCurr
End With

End Sub
Private Sub cmdBrowse_Click()

‘Defines the variable as a variant data type

Dim X As Variant

blnBrowseClicked = False

'Opens the dialog

X = Application.GetOpenFilename("MDB Files (*.mdb), *.mdb*", 2, "Open”
False)

If X <> False Then

blnBrowseClicked = True
txXtADEMName.Text = X
ListTables

End If

txtADBMName . SetFocus
End Sub

Private Sub cmdCancel_Click()
On Exrror Resume Next

Set colTables = Nothing
Unload Me

End Sub

Private Sub cmdResetaAll_Click()
On Error Resume Next

ChangeSelection (False)
End Sub

Private Sub ListTables()
Dim wrkdefault As Workspace
Dim db As Database

Dim tblList As TableDef
Dim Message As String

Dim Title As String

On Exror GoTo Handler

' Get default Workspace.
Set wrkdefault = DBEngine.Workspaces(0)

56

* Open database
If blnBrowseClicked = True Then
Set db = wrkdefault.OpenDatabase (txtADEMName)
Else
Set db = wrkdefault.OpenDatabase(ActiveWorkbook.Path & "\" & txtADEMName)
End If

lstTables.Clear

* Fetch all the tables
For Each tblList In db.TableDefs
If Left(tblList.Name, 4) <> "MSys" Then
1stTables.AddItem (tblList.Name)
End If
Next

Set db = Nothing

lstTables.Enabled = True
cmdSelectall.Enabled = True
cmdResetall.Enabled = True

Exit Sub

Handler:
Message = __

"Error Number : " & Exr _
& Chr(10) & "Error Description: * & Error()

Title = "An error has occured"
MsgBox Message, , Title
Message = "*

Title = "~

cmdResetAll_Click
lstTables.Clear

End Sub

Private Sub cmdOK_Click()
Dim lngItemCurr As Long

‘will add the question Box
Dim Msg, Style, Title, Help, Ctxt, Response, MyString

Msg = * Do you want to make jMap? * ' Define message.
Style = vbYesNo + vbCritical + vbDefaultButtonl * Define buttons.
Title = "jMap Restore" ' Define title.
Help = "DEMO.HLP"
Ctxt = 1000 ‘ Define topic
' context.

' Display message.

If txtADEMName = *"" Then
MsgBox "Access Filename must be entered", vbExclamation, "Error”
Exit Sub

End If

If UCase(Right (txtADEMName, 4)) <> ".MDB" Then
txtADEMName = txtADBEMName + ".mdb"
End If

Set colTables = New Collection

With 1lstTables
For lngItemCurr = 0 To .ListCount - 1
If .Selected(lngIltemCurr) Then
colTables.Add .List(lngItemCurr)
End If
Next lngItemCurr
End With

If MStartup.bAccesstojMap = True Then

57

MImportAccessToWks.Import txtADBMName

Response = MsgBox(Msg, Style, Title, Help, Ctxt)
If Response = vbYes Then ' User chose Yes.

MRestorejMap.MapTable
End If
Else
MAnalysisAccessToWks.Import txtADEMName
End If
Set colTables = Nothing
Unload Me
End Sub

Private Sub ChangeSelection(ByVal Selected As Boolean)
Dim lngItemCurr As Long

On Error Resume Next
With lstTables
For lngItemCurr = 0 To .ListCount - 1
.Selected(lngItemCurxr) = Selected
Next lngItemCurr
End With

End Sub

Private Sub cmdSelectAll_Click()
On Error Resume Next
ChangeSelection (True)

End Sub

Private Sub lstTables_Change()
EnableOKasNecessary

End Sub

Private Sub lstTables_Click()
EnableCKAsNecessary

End Sub

Private Sub txtADBMName_ AfterUpdate()
If txtADBMName <> "" Then

ListTables

End If

End Sub

Private Sub UserForm_Initialize()
blnBrowseClicked

txtADBMName.Text
lstTables.Cleaxr

False

cndSelectAll .Enabled = False
cmdResetdll.Enabled = False
lstTables.Enabled = False
cmdOK.Enabled = False

58

End Sub

A-1-4 frmWelcome

* Show welcome interface when open the workbook
Sub show_Beep ()

On Error Resume Next

Beep
Show

End Sub

Private Sub UserForm Click()
Beep
End

End Sub

A-2 Modules Source Code

The source code for Modules includes as following created modules:

MAnalysisAccessToWks
MColor
MExportTablesToAccess
MimportAccessToWks
MRestorejMap
MShellExecute
MStartup

MTables

All source code in above modules are listed as following:
A-2-1 MAnalysisAccessToWks

Option Explicit
Private db As Database
Sub Import(strADBM As String)

' Purpose: imports an access database into an excel workbook and builds a jmap
‘Arguments: string containing the database to import

On Error GoTo Handler

‘create a jmap object
Dim map As New AccessdMapBuilder

' Get default Workspace.
Dim wrkdefault As Workspace

59

Set wrkdefault = DBEngine.Workspaces(0)

' Open database
Dim db As Database

If frmImportAccessToWks.BrowseClicked = True Then

Set db = wrkdefault.OpenDatabase (StrxADBM)
Else

Set db = wrkdefault.OpenDatabase(ActiveWorkbook.Path & "\" & StrADBM)
End If

‘name the sheet
map.NameSheet sStrADBM

‘insert some set's and set members
map.InsertSetMember "View", "Tables”
map.InsertSet "Table", "F*
map.InsertSet *Field", "N"
map.InsertSetMember "View", "Types"
map.InsertSet *“Type®, “F*

Dim colTables As Collection
Set colTables = fxmImportAccessToWks.SelectedTables

‘For every selected table, import table information
Dim Tb

Dim Rs As Recordset

Dim I As Integer

Dim RsSgl As String

For Each Tb In colTables

RsSgl = "SELECT * FROM [" & Tb & "]1"
Set Rs = db.OpenRecordset(RsSgl, dbOpenDynaset)

'insert a set member for the tables set
map.InsertSetMember "Table"”, Tb

* Loop through the Microsoft Access field names and insert into

' the set of fields

map .AddColumn

For I = 0 To Rs.fields.Count - 1
map.InsertSetMember "Field", Rs.fields(I).Name
map.InsertAssociation "Table", Tb, "f", "Field", Rs.fields(I) .Name,

"t*, "Tables"
Next I
Next Th

‘For every selected table, get the type information
For Each Tb In colTables
* Loop through the Microsoft Access field types and insert into
' the set of types
RsSqgl = “SELECT * FROM [" & Tb & "]1"
Set Rs = db.OpenRecordset (RsSql, dbOpenDynaset)

For I = 0 To Rs.fields.Count - 1
If map.FindSetMember ("Type", FieldType(Rs.fields(I).type)) = False

map.AddColumn
map.InsertSetMember *"Type", FieldType(Rs.fields(I).type)
End If
map.InsertAssociation "Type", FieldType(Rs.fields(I).type), "£",
"Field", Rs.fields(I).Name, "t", "Types"
Next I
Next Tb

'Close the database
db.Close

‘group the sets

map . DoRowGrouping *View®
map .DoRowGrouping “Table*
map .DoRowGrouping “Field"
map .DoRowGrouping “Type”

MColor.ColorItem

MsgBox "Data Imported from * & StrADBM & " to * & ActiveWorkbook.Name,
vbInformation, "“Information®

Exit Sub

Handler:

Dim Message As String

Dim Title As String

Message = _

"Error Number : " & Bxrr _

& Chr(10) & "Error Description: " & Erxror()
Title = "An error has occured”
MsgBox Message, , Title
Message = *"
Title = "

End Sub
Function FieldType(intType As Integer) As String

'Purpose: converts field type integer to return a field type string
Select Case intType
Case dbBoolean
FieldType = "dbBoolean”
Case dbByte
FieldType = "dbByte"
Case dbInteger
FieldType = "dbInteger”
Case dbLong
FieldType = "dbLong”
Case dbCurrency
FieldType = "dbCurrency”
Case dbSingle
FieldType = "dbSingle"”
Case dbDouble
FieldType = "dbDouble”
Case dbDate
FieldType = "dbDate"
Case dbText
FieldType = "dbText"
Case dbLongBinary
FieldType = "dblLongBinary"
Case dbMemo
FieldType = "dbMemo"
Case dbGUID
FieldType
End Select

abGUID

End Function

A-2-2 MColor

Sub ColorItem()
Dim colNum As Integer
Dim rowNum As Integer
Dim rgnSheet As Excel.Range

AutoAqua = RGB(60, 186, 196)
AutoLime RGB(153, 178, 51)
Autogreen = RGB(0, 251, 0)

autored = RGB(255, 0, 0)
AutoLightOrg = RGB(222, 144, 51)
AutoPink = RGB(255, 0, 255)
Autopaleblue = RGB(153, 204, 255)
AutoLightPink = RGB(255, 166, 205)
AutoYellow = RGB(238, 192, 65)
AutoBrightYellow = RGB{255, 255, 0)
AutoGray = RGB(128, 128, 128)
AutoLightPurple = RGB(204, 137, 255)
AutoPurple = RGB(255, 0, 255)
AutoDarkGreen = RGB(0, 95, 0)
AutoBrightBlue = RGB(0, 204, 255)

Set rgnSheet = ActiveSheet.UsedRange

For colNum = 1 To rgnSheet.Columns.Count
For rowNum = 1 To rgnSheet.Rows.Count

If UCase(rgnSheet.Cells(rowNum, colNum).value) = ** Then
rgnSheet.Cells (rowNum, colNum).Interior.ColorIndex = x1lNone
ElselIf UCase(rgnSheet.Cells(rowNum, colNum).value) = "A" Then
rgnSheet.Cells (rowNum, colNum).Interior.ColorIndex = 16
ElseIf UCase(rgnSheet.Cells(rowNum, colNum).value) = *v* Then
rgnSheet.Cells (rowNum, colNum).Interior.ColorIndex = 15
ElseIf UCase(rgnSheet.Cells(rowNum, <olNum).value) = "E" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoLime
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = "T" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = Autogreen
ElseIf UCase(rgnSheet.Cells{rowNum, colNum).value) = "F* Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = autored
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = "M" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoLightOrg
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = "L" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoPink
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = "S" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoBrightVYellow
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = *N" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoLightPink
ElseIf UCase(rgnSheet.Cells(rowNum, colNum).value) = "V* Then
rgnSheet.Cells (rowNum, ¢olNum).Interior.Color = AutoYellow
ElseIf UCase(rgnSheet.Cells(rowNum, colNum).value) = *I* Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoGray
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = "G" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoDarkGreen
Elself UCase(rgnSheet.Cells(rowNum, colNum).value) = "X* Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoLightPurple
ElseIf UCase(rgnSheet.Cells(rowNum, colNum).value) = "R" Then
rgnSheet.Cells (rowNum, colNum).Interior.Color = AutoBrightBlue
ElseIf UCase(rgnSheet.Cells{rowNum, colNum).value) = "L" Then
rgnSheet .Cells (rowNum, colNum).Interior.Color = AutoPurple
Elself IsNumeric(rgnSheet.Cells(xrowNum, colNum).value) Then
rgnSheet .Cells (rowNum, colNum).Font.Color = autored
End If
Next rowNum
Next colNum
End Sub

A-2-3 MExportTablesToAccess

Option Explicit
Private db As Database

Sub Export (strADBM As String)

'Purpose: exports worksheets from the active workbook into access
‘Arguments: string containing the database name to create in access

Dim colSheets As Collection

Dim Wks, WksTemp
Dim wrkdefault As Workspace

62

Dim dataSource As String
Dim Message As String
Dim Title As String

Dim ThIndex As Integer

On Exror GoTo Handler

' Get default Workspace.
Set wrkdefault = DBEngine.Workspaces(0)

* Create a new encrypted database
If frmExportTablesToAccess.SaveAsClicked = True Then
Set db = wrkdefault.CreateDatabase (strADBM, dbLangGeneral, dbEncrypt)
Else
Set db = wrkdefault.CreateDatabase (ActiveWorkbook.Path & "\" & sStrADBM,
dbLangGeneral, dbEncrypt)
End If

Set colSheets = frmExportTablesToAccess.SelectedSheets
‘Create a new Table, and use the Worksheet Name as the
*Table Name. Or Change the Table if the name already exist
Dim tdfLoop As TableDef

‘For every selected worksheet, export to access
For Each Wks In colSheets

WksTemp = Wks
TbhIndex = 1
with d

* Enumerate TableDefs collection.
For EBach tdflLoop In .TableDefs
‘For every table, compare if it exist
If Wks = tdfLoop.Name Then
Worksheets (Wks) .Select
Wks = WksTemp + Format (TbIndex)
ActiveSheet.Name = WKsS
TbIndex = ThIndex + 1
End If
Next tdflL.oop

End With
WksToAccess (Wks)
Next

MsgBox "Data Exported from * & ActiveWoxkbook.Name & " to " & StrADBM,
vbInformation, *"Information®

'‘Close the database
db.Close

'Check whether the open mdb flag is set. If so, open the newly created access
database.

*If user clicked on SaveAs, do not access the MDB file using the path name

'Tf user entered the MDB filename, then insert active workbook path name in
the MDB string to

ravoid “file not found" error when opening the database in access.

If frmExportTablesToAccess.OpenADBM = True Then
If frmExportTablesToAccess.SaveAsClicked = True Then
ShellExec strADBM
Else
ShellExec ActiveWorkbook.Path & "\" & StrADBM
End If
End If

BExit Sub

63

Handler:

' Exrror 3204 means that the database already exist
If DBEngine.Errors(0).Number = 3204 Then
' Open the database
Set db = wrkdefault.OpenDatabase (strADBM)
Resume Next

Else
Message = _
*Error Number : " & Err _
& Chr(10) & "Error Description: " & Error()

Title = "An error has occured”
MsgBox Message, , Title
Message = *"

Title = ""

End If
End Sub
Sub WksToAccess (ByVal Wks)

' Purpose: exports worksheets in active workbook to access
'Arguments: worksheet object
‘Returns:

' Declare variables.

Dim Rs As Recordset

Dim td As TableDef

Dim Fd As Field

Dim X As Integer

Dim £ As Integer

Dim r As Integer

Dim ¢ As Integer

Dim Message As String
Dim Title As String

Dim LastColumn As Integer
Dim NumberTest As Double
Dim StartCell As Object
Dim LastCell As Object
Dim Response

Dim CreateFieldFlag As Integer
Dim flag As Integer

CreateFieldFlag = 0
flag = 0

' Turn off Screen Updating.
Application.ScreenUpdating = False
On Error GoTo ErrorHandler

' Select the worksheet and Cell "Al."

' In this example, you need column headers in the first row.
' These headers will become field names.

Worksheets (Wks) .Select

Range("Al") .Select

' If the ActiveCell is blank, open a message box.
If ActiveCell.value = "* Then
Message = "There is no data in the active cell: " & _

ActiveSheet.Name & "!" & ActiveCell.Address & Chr(1l0) & _
_"Please ensure that all your worksheets have data on " & _
“them " & Chr(10) & _
"and the colum headers start in cell Al" & Chr(10) & _
Chr(10) & *This process will now end.”

Title = *Data Not Found"

MsgBox Message, , Title
Exit Sub
End If

Set td = db.CreateTableDef (Wks)

* Find the number of fields on the sheet and store the number
' of the last column in a variable.

Selection.End(x1ToRight) .Select

LastColumn = Selection.Column

' Select the current region. Then find what the address
* of the last cell is.
Selection.CurrentRegion.Select
Set LastCell = Range(Right(Selection.Address, _
Len(Selection.Address) - _
Application.Search(":", Selection.Address)))

' Go back to cell "Al."
Range(*"Al").Select

* Enter a loop that will go through the columms and
* create fields based on the column header.
For £ = 1 To LastColumn

flag = 0

* Enter a select case statement to determine
' the cell format.
Select Case Left{ActiveCell.Offset(l, 0).NumberFormat, 1)
Case *"G*" ‘General format
* The "General®" format presents a special problem.
* See above discussion for explanation
If ActiveCell.value Like "*Zip*" Then
Set Fd = td.CreateField(ActiveCell.value, _
dbMemo)
Fd.AllowZerolength = True
r = LastCell.row - 1
flag = 1
Else
If ActiveCell.value Like "*Postal*" Then
Set Fd = td.CreateField(ActiveCell.value, _
dbMemo)
Fd.AllowZeroLength = True
r = LastCell.row - 1
flag = 1
End If
End If

* Set up a text to determine if the field contains
' "Text* or "Numbers.”
For r = 1 To LastCell.row - 1
If flag = 1 Then r = LastCell.row
CreateFieldfFlag = 1
NumberTest = ActiveCell.Offset(r, 0).value / 2
Next r

* If we get all the way through the loop without

* encountering an error, then all the values are

* numeric, and we assign the data type to be "dbDouble”
If flag = 0 Then

Set Fd = td.CreateField(ActiveCell.value, dbDouble)
End If

* Check to see if the cell below is formatted as a date.
case 'm., ndw' -yn
Set Fd = td.CreateField(ActiveCell.value, dbDate)

* Check to see if the cell below is formatted as currency.

65

case -s-' --w
Set FA = td.CreateField(ActiveCell.value, &Currency)

* All purpose trap to set field to text.
Case Else

Set Fd = td.CreateField(ActiveCell.value, dbMemo)
End Select

' Append the new field to the fields collection.
td.fields.Append Fd

' Move to the right one column.
ActiveCell.Offset (0, 1).Range("Al").Select

* Repeat the procedure with the next field (column).
Next £

' Append the new Table to the TableDef collection.
db.TableDefs.Append td

' Select Cell *A2" to start the setup for moving the data from
* the worksheet to the database.
Range("A2") .Select

' Define the StartCell as the Activecell. 21l record addition
' will be made relative to this cell.
Set StartCell = Range(ActiveCell.Address)

' Open a recordset based on the name of the activesheet.
Set Rs = db.OpenRecordset (Wks)

' Loop through all the data on the sheet and add it to the
' recordset in the database.
For X = 0 To LastCell.xrow - 2
Rs.AddNew
For ¢ = 0 To LastColumn - 1
Rs.fields(c) = StartCell.Offset(X, c).value

Next ¢

Rs.Update
Next X

Application.ScreenUpdating = True
Exit Sub

ErroxHandler:
Select Case Err
Case 3204 ' Database already exists.
Message = "There has been an error creating the database.” & _

Chr(10) & _
Chr(10) & "Exrror Number: " & Err & _
Chr(10) & ®"Erxror Description: " & Error() & _
Chr(10) & _
Chr(10) & "Would you like to delete the existing” & _
"database:" & Chr(10) & _
Chr(10) & _
Left (ActiveWorkbook.Name, Len(ActiveWorkbook.Name) - 4) & _
= .mdb"

Title = "Error in Database Creation"

Response = MsgBox(Message, vbYesNo, Title)

If Response = vbYes Then
Kill _

Left (ActiveWorkbook.Name, Len(ActiveWorkbook.Name) - 4) _
& ".mdb"

Message = "*
Title = ""
Resume

Else
Message = "In order to run this procedure you need" & _

Chr(10) & "to do ONE of the following:" & _

Chr(10) & _
Chr(1l0) & "1. Move the existing database to a " & _
different directory, or " & _
Chr(10) & *"2. Rename the existing database, or" & _
Chr(10) & "3. Move the workbook to a different " & _
*directory, or" & _
Chr(10) & "4. Rename the workbook”

Title = "Perform ONE of the following:"

MsgBox Message, , Title

Message = ""

Title = "*

Exit Sub

BEnd If

* Check to see if the error was Type Mismatch. If so, set the
+ f£file to dbMemo.
Case 13 ' Type mismatch.
If CreateFieldFlag = 1 Then
Set Fd = td.CreateField(ActiveCell.value, dbMemo)
Fd.AllowZeroLength = True
flag = 1
r = LastCell.row - 1
CreateFieldFlag = 0
Resume Next
Else
Message = _
"Worksheet Name : " & Wks _
& Chr(10) _
& Chr(l10) & "Error Number : " & Exrr _
& Chr(10) & "Error Description: " & Error() _
& Chr(10) & Chr(10) & "Worksheet cannot be exported!”

Title = "Type Mismatch"
MsgBox Message, , Title
Message = "*
Title = **

End If

* For any other error, display the error.
Case Else
Message = _
"Worksheet Name : " & Wks _
& Chr(10) _
& Chr(10) & "Error Number : " & Err _
& Chr(10) & "Exrror Description: * & Error() _
& Chr(10) & Chr(10) & *Worksheet cannot be exported!”
Title = *An error has occured"
MsgBox Message, , Title
Message = ""
Title = "*

End Select
End Sub

A-2-4 MImportAccessToWks
Option Explicit
Private db As Database
?ub Import (StrADBM As String)

'Purpose: imports an access database into an excel workboock and builds a Jjmap
‘Argquments: string containing the database to import

On Error GoTo Handler
‘Get default Workspace.

Dim wrkdefault As Workspace
Set wrkdefault = DBEngine.Workspaces (0)

67

*Open database
Dim db As Database

If frmImportAccessToWks.BrowseClicked = True Then

Set db = wrkdefault.OpenDatabase (strADBM)
Else

Set db = wrkdefault.OpenDatabase (ActiveWorkbook.Path & "\" & StrADEM)
End If

Dim colTables As Collection
Set colTables = frmImportAccessToWks.SelectedTables

‘For every selected table, import table information
Dim Tb

Dim Rs As Recordset

Dim I, J As Integer

Dim RsSql As String

Dim newsheet, shtName As String

Dim fldName As Field

Dim fldvalue As String

Dim strColunmWdlen As Integer

Dim intCount, numRow As Integer
For Each Tb In colTables

‘new sheet name
newsheet = Tb

On Error Resume Next
Sheets (newsheet) .Select
On Error Resume Next

‘add new sheet

Sheets.Add
ActiveSheet.Name = newsheet
ActiveWindow.Zoom = 75

RsSql = "SELECT * FROM [* & Tbh & "]"
Set Rs = db.OpenRecordset (RsSql, dbOpenDynaset)

'Loop through the Microsoft Access field names and insert into
* the set of fields

For I = 0 To Rs.fields.Count - 1

intCount = 1

‘strColunmwWdlen = 1

Cells(intCount, I + 1) = Rs.fields(I).Name

Cells(intCount, I + 1).Interior.ColorIndex = 8

Cells(intCount, I + 1).Font.Bold = True

Cells(intCount, I + 1).Borders.LineStyle = XlDouble
strColunmWdlen = 16

Worksheets (newsheet) .Columns (I + 1) .ColumnWidth = strColunmWdLen

Do Until Rs.EOF
Set fldName = Rs.fields(I)
£fldvalue = fldName.value
intCount = intCount + 1
Cells(intCount, I + 1) = fldvalue
If (strColunmWdLen < Len(fldvalue)) Then
strColunmWdlen = Len(fldvalue)

Worksheets (newsheet) .Columns (I + 1) .ColumnWidth = strColunmWdLen
End If

68

Rs.MoveNext
Loop

Rs.MoveFirst
Next I
Next Tb
db.Close

MsgBox "Data Imported from " & StrADBM & " to " & ActiveWorkbook.Name,
vbInformation, "Information®

Exit Sub

Handlex:
Dim Message As String
Dim Title As String
Message = _
"Error Number : " & Exr _
& Chr(10) & “Error Description: " & Error()
Title = "An error has occured*”
MsgBox Message, , Title
Message = ""

Title = **

End Sub

A-2-5 MRestorejMap

Dim rstSheetName, cItemSheetName, cTupleSheetName As String
Sub MapTable()

' CreateTables Macro
* Macro recorded 07/12/2001 by Minghui Han

Dim rstSheetNameTemp, cIltemSheetNameTemp, cTupleSheetNameTemp, sTempName As
String

Dim nCount, nSheetCount As Integer

Dim nEndStep As Integer

rstSheetNameTemp = *{jMapRestore}"
cItemSheetNameTemp = "{cItems}"
cTupleSheetNameTemp = "{cTuples}"

nCount = 1

rstSheetName = rstSheetNameTemp
cItemSheetName = cItemSheetNameTemp
cTupleSheetName = cTupleSheetNameTemp

Call MakejMap
nEndStep = Sheets.Count

For nSheetCount = nEndStep To 1 Step -1
STempName = cItemSheetNameTemp + Format (nCount)

If Sheets (nSheetCount).Name = sTempName Then
rstSheetName = rstSheetNameTemp + Format (nCount)
cIltemSheetName = sTempName
cTupleSheetName = cTupleSheetNameTemp + Format (nCount)
nCount = nCount + 1

Call MakejMap
nSheetCount = nSheetCount + 1

69

End If

Next nSheetCount

End Sub
Sub MakejMap()

Dim newsheet As Sheets

Dim nHorPos, nVerPos, nColumnStart, nColumnEnd, nRowStart, nRowEnd, nToRow As

Integer
Dim numItems, fndlen As Integer
Dim strCellValue, searchString, subString, searchChar As String

On Error Resume Next
Sheets (rstSheetName) .Select
On Erxor Resume Next

'‘add new sheet

Sheets.Add

ActiveSheet.Name = rstSheetName
ActiveWindow.Zoom = 75

Sheets (cTupleSheetName) .Select

'‘Get the Activesheet's range
Set rgnSheet = ActiveSheet.UsedRange

nRowEnd = rgnSheet.Rows.Count
nColumnEnd = rgnSheet.Columns.Count
nToRow = nRowEnd
'£ind the started column for "Roles" data item
For nRowStart = 1 To nRowEnd
For nColumnStart = 1 To nColumnEnd
strCellValue = Cells{nRowStart, nColumnStart)

If InStr(l, strCellValue, "Roles", vbTextCompare) = 1 Then

nHorPos = nRowStart +£find first row position of text with

"Roles"

nVerPes = nColumnStart *£ind column position of text with

"Roles*
GoTo getvValue

End If
Next nColumnStart
Next nRowStart
getValue:
For nRowStart = nHoxrPos + 2 To nRowEnd

searchString = Cells(nRowStart, nVerPos)

fndlen = InStr(l, searchString, ".")
numitems = 1
Do Until fndlen = 0

subString = Left(searchString, fndlen - 1)

searchString = Mid(searchString, fndlen + 1) ' Returms rest string

fndlen = InStr(l, searchString, ".")

Sheets (rstSheetName) .Select

subString

= Trim(subString)

Cells(numItems, nRowStart - 2).value = subString

numItems = numitems + 1

Sheets (cTupleSheetName) .Select

Loop

‘put last char to the new sheet
Sheets (rstSheetName) . Select

subString =

Trim({searchString)

Cells (numItems, nRowStart - 2).value = subString
Sheets (cTupleSheetName) .Select

Next nRowStart

Sheets (rstSheetName) .

Select

Set rgnSheet = ActiveSheet.UsedRange

nRowEnd = rgnSheet.Rows.Count
nColumnEnd = rgnSheet.Columns.Count

‘replace "?" with empty
For nRowStart = 1 To nRowEnd

For nColummStart

strCellvalue

1 To nColumnEnd

= Cells{nRowStart, nColummnStart)

If (strCellValue = "2?") Then

Cells (nRowStart, nColummStart).value = *”

End If

Next nColumnStart

Next nRowStart

D I I A RN B)

Sheets (cItemSheetName)

‘Get the Activesheet's

.Select

range

Set rgnSheet = ActiveSheet.UsedRange

nRowEnd = rgnSheet.Rows.Count
nColummEnd = rgnSheet.Columns.Count

*£ind the started column for "Roles” data item
For nRowStart = 1 To nRowEnd

For nColumnStart

strCellvValue
If InStr(l,
nHorPos
"Roles"
nVexPos
"Roles"

= 1 To nColumnEnd

= Cells (nRowStart, nColumnStart)

strCellvalue, *Dataltem", vbTextCompare) = 1 Then

= nRowStart 'find first row position of text with

= nColumsStart *£ind column position of text with

GoTo getValueltem

End If

Next nColummStart

Next nRowStart

71

getValueIltem:
numItems = 1
For nRowStart = nHorPos + 1 To nRowEnd

searchString = Cells(nRowStart, nVerPos)

Sheets (rstSheetName) .Select

searchString = Trim(searchString)
Cells (numItems, nToRow + 1).value = searchString

numItems = numitems + 1

Sheets (cItemSheetName) .Select

Next nRowStart

Sheets (rstSheetName) . Select

‘add column numbers for each row

For nRowStart = 1 To nRowEnd - 1
numItems = 0
For nColumnStart = 1 To nToRow - 1

If Not Cells(nRowStart, nColumnStart) = " Then
numltems = numltems + 1
End If
Next nColumnStart
Cells (nRowStart, nToRow -~ 1) = numItens
Next nRowStart
numItems = 0
*find the started column for data item
For nRowStart = nRowEnd - 1 To 1 Step -1
numItems = numItems + 1
strCellvalue = Cells(nRowStart, nToRow + 1)
If InStr(l, strxCellvalue, "{", vbTextCompare) = 1 Then
Cells (nRowStart, nToRow) = numItems - 1

Range (Cells (nRowStart, 1), Cells(nRowStart, nToRow
Selection.Font.Bold = True

numItems = 0
End If
Next nRowStart

‘fomat columm width
Range (Cells(l, 1), Cells{nRowEnd - 1, nToRow)).Select
Selection.ColumnWidth = 2

With Selection
.HorizontalAlignment = xlCenter
.VerticalAlignment = xlBottom
.WrapText = False
.Orientation = 0
.AddIndent = False
.ShrinkToFit = False

+ 1)) .Select

72

.MergeCells = False
End with

Range (Cells(l, nToRow + 1), Cells(nRowEnd - 1, nToRow + 1)).Select
Selection.ColummWidth = 20
MColor.ColorItem

Cells(1l, 1).Select

End Sub

A-2-6 MShellExecute

' Puxrpose: this module is needed to display a html page in the default web
! browser

Option Explicit

Private Declare Function ShellExecute Lib "shell32.dll~" Alias _
“ShellExecuteA® (ByVal hwnd As Long, ByVal lpszOp As _
String, ByVal lpszFile As String, ByVal lpszParams As String, _
ByVal lpszDir As String, ByVal FsShowCmd As Long) As Long

Private Declare Function GetDesktopWindow Lib "user32" () As Long

Private Const SW_SHOWNORMAL = 1
Private Const SW_SHOWMAXIMIZED = 3

Private Const SE_ERR_FNF 2&

Private Const SE_ERR_PNF = 3&

Private Const SE_ERR_ACCESSDENIED = 5&
Private Const SE_ERR_OOM = 8&

Private Const SE_ERR_DLLNOTFOUND = 32&
Private Const SE_ERR_SHARE = 26&

Private Const SE_ERR_ASSOCINCOMPLETE = 27&
Private Const SE_ERR_DDETIMEOUT = 28&

Private Const SE_ERR_DDEFAIL = 29&
Private Const SE_ERR_DDEBUSY = 30&
Private Const SE_ERR_NOASSOC = 31&

Private Const ERROR_BAD_FORMAT = 11&

Sub ShellExec(DocName As String)
Dim r As Long, Msg As String
Dim Scxr_hDC As Long

Scr_hDC = GetDesktopWindow ()
r = ShellExecute(Scr_hDC, "Open®”, DocName, "", *C:\", SW_SHOWNORMAL)

If r <= 32 Then
‘There was an error
Select Case r
Case SE_ERR_FNF
Msg = "File not found"
Case SE_ERR_PNF
Msg = "Path not found”
Case SE_ERR_ACCESSDENIED
Msg = "Access denied"
Case SE_ERR_OOM
Msg = "Out of memory"
Case SE_ERR_DLLNOTFOUND
Msg = "DLL not found"
Case SE_ERR_SHARE
Msg = "A sharing violation occurred”
Case SE_ERR_ASSOCINCOMPLETE
Msg = "Incomplete or invalid file association”
Case SE_ERR_DDETIMEOUT

Msg = "DDE Time out*
Case SE_ERR_DDEFAIL

Msg = *DDE tramsaction failed*
Case SE_ERR_DDEBUSY

Msg = "DDE busy"
Case SE_ERR_NOASSOC

Msg = "No association for file extension"
Case ERROR_BAD_FORMAT

Msg = "Invalid EXE file or error in EXE image"
Case Else

Msg = "Unknown error"”

End Select
MsgBox Msg, vbInformation
End If

End Sub

A-2-7 MStartup
Option Explicit

‘Module Level Constant Declaration Section

Private Const MACRO_MENU_CAPTION As String = "ADM&jMap" ' added by han

Public bjMaptoAccess As Boolean
Public bAccesstojMap As Boolean

Sub RemovejMapMacroMenu()
Dim cbct As CommandBarControl
On Error Resume Next

For Each cbct In CommandBars.ActiveMenuBar.Controls
If 0 = StrxComp(cbct.Caption, MACRO_MENU_CAPTION, vbBinaryCompare) Then
Call cbct.Delete
End If
Next cbct
End Sub

Public Sub AddjMapMacroMenu()

' MStartup Macro
' Macro recorded 3/23/2001 by Minghui Han

' Keyboard Shortcut: Ctrl+b -

Dim cbpopTopMenu As CommandBarPopup
Dim cbpopSubMenu As CommandBarPopup
Dim cbetls As CommandBarControls

On Error Resume Next

' Ensure we have no duplicates
Call RemovejMapMacroMenu

bjMaptoAccess = False
bAccesstojMap = False

Set cbpopTopMenu = CommandBars.ActiveMenuBar.Controls.Add(type:=msoControlPopup)

With cbpopTopMenu
.Caption = MACRO_MENU_CAPTION

.OnAction = "mnujMap_OnAction®
.Visible = True
End With

Set cbectls = cbpopTopMenu.Controls

* Add the sub items to the menu

With cbctls.add(msoControlButton)
.Caption = "&Create Tables"
.OnAction = *mnuCreateTables_OnAction”
.FacelId = 240

End With

* Add the sub items to the menu

With cbectls.add(msoControlButton)
.Caption = "&Remove Tables"
.OnAction = “mnuRemoveTables_OnAction*
.FaceId = 2002

End With

* Add the sub items to the menu

With cbetls.add(msoControlButton)
.Caption = "&jMap->DB"
.OnAction = "mnujMaptoAccess_OnAction"
.Faceld = 2116

End With

* Add the sub items to the menu

With cbctls.Add (msoControlButton)
.Caption = "&DB->jMap*
.OnAction = "mnuAccesstojMap_OnAction"”
.FaceId = 2109

End With

* Add the sub items to the menu
With cbetls.Add (msoControlButton)
.Caption = "DB jMap &Analysis"
.OnAction = "mnuAnalysisAccesstojMap_OnAction®
.Faceld = 2114
End With

With cbctls.2dd (msoControlButton)
.Caption = “&Help..."
.OnAction = "mnuHelp_OnAction*
.BeginGroup = True
.FaceId = 49

End With

End Sub

Private Sub mnujMap_OnAction()

On Error Resume Next

End Sub

Private Sub mnujMaptoAccess_OnaAction()

On Error Resume Next -

bjMaptoAccess = True
frmBookSheetInfo.Show
bjMaptoAccess = False

End Sub

Private Sub mmuAccesstojMap_Onaction()

On Error Resume Next

75

bAccesstojMap = True
frmImportAccessToWks.Show
bAccesstojMap = False

End Sub
Private Sub mnuAnalysisAccesstojMap_OnAction()

On Error Resume Next

bAccesstojMap = False
frmImportAccessToWks.Show

End Sub

Private Sub mnuHelp_OnAction()
On Error Resume Next
ShellExec ActiveWorkbook.Path & "\" & "Help.htm"

End Sub

Private Sub mnuCreateTables_OnAction()
On Error Resume Next
frmBookSheetInfo.Show

End Sub

Private Sub mnuRemoveTables_OnAction()
On Error Resume Next
MTables.RemoveTables

End Sub

A-2-8 MTables
Sub CreateID(ByVal strSheetID As String, ByVal strBookID As String)

CreateTables Macro
Macro recorded 07/03/2001 by Minghui Han

Keyboard Shortcut: Ctrl+t

Dim nHorPos, nVerPos, nColumnStart, nColumnEnd, nRowStart, nRowEnd As Integex
Dim numSetID, numMemberID, numItems, numTables, numField As Integer °
Dim oldsheet, newsheet, strCellValue As String

nHorPos 1
nVerPos 1
numSetID = 0
numMenberID = 0

oldsheet
newsheet

ActiveSheet.Name
"<" + oldsheet + ">"

‘copy oldsheet contents to the new sheet and renamed as newsheet name
Sheets (oldsheet) .Copy before:=Sheets (oldsheet)
ActiveSheet.Name = newsheet

‘Get the Activesheet's range
Set rgnSheet = ActiveSheet.UsedRange

nRowEnd = rgnSheet.Rows.Count
nColumnEnd = rgnSheet.Columns.Count

76

‘replace empty cell with "2*
For nRowStart = 1 To nRowEnd
For nColumnStart = 1 To nColummEnd
strCellvValue = Cells(nRowStart, nColumnStart)
If ((strCellvValue = "") And (nColummStart < nColumnEnd - 2)) Then
Cells (nRowStart, nColumnStart).value = "2*
End If
Next nColumnStart
Next nRowStart
*£find the started column for data item
For nRowStart = 1 To nRowEnd
For nColumnStart = 1 To nColumnEnd
strCellvValue = Cells(nRowStart, nColumnStart)

If InStr(l, strCellValue, "{", vbTextCompare) = 1 Then

nHorPos = nRowStart +find first row position of *{"
nVerPos = nColummStart *find column position of *{"
GoTo setID

End If

Next nColumnStart
Next nRowStart

setID:
For nRowStart = 1 To nRowEnd

strCellvValue = Cells(nRowStart, nVerPos)

If InStr(l, strCellValue, "{", vbTextCompare) = 1 Then
numSetID = npumSetID + 1
numMemberID = 0
Cells(nRowStart, nVerPos + 5).value = "N"

Else

Cells(nRowStart, nVerPos + 5).value = "M"
End If
Cells (nRowStart, nVerPos + 1).value = numSetID
Cells (nRowStart, nVerPos + 2).value = numMemberID
Cells (nRowStart, nVerPos + 3).value = strSheetID
Cells (nRowStart, nVerPos + 4).value = strBookID

numMemberID = numMemberID + 1
Next nRowStart
‘color and format cell's property

*for SetID column
Range (Cells(l, nVerPos + 1), Cells(nRowEnd, nVerPos + 1)).Select
Selection.Font.ColorIndex = 3
Selection.Font.Bold = True
With Selection
.HorizontalAlignment = xlCentexr
.VerticalAlignment = x1Bottom
.WrapText = False
.Orientation = 0
.AddIndent = False
.ShrinkToFit = False
.MergeCells = False
End With

*for MemeberID column
Range (Cells(1l, nVexPos + 2), Cells(nRowEnd, nVerPos + 2)).Select
Selection.Font.ColorIndex = 9
Selection.Font.Bold = True
With Selection
.HorizontalAlignment = xlCenter
.Verticalalignment = x1Bottom
.WrapText = False
.Orientation = 0
.AddIndent = False
.ShrinkToFit = False
.MergeCe:lls = False
End With

*for SheetID colum
Range(Cells(1l, nVexrPos + 3), Cells(nRowEnd, nVerPos + 3}).Select
Selection.Font.ColorIndex = 52
Selection.Font.Bold = True
With Selection
.HorizontalAlignment = xlCenter
.Verticalalignment = xlBottom
.WrapText = False
.Orientation = 0
.AddIndent = False
.ShrinkToFit = False
.MergeCells = False
End With

' for WoorkBookID column
Range(Cells(l, nVexrPos + 4), Cells(nRowEnd, nVerPos + 4)).Select
Selection.Font.ColorIndex = 7
Selection.Font.Bold = True
With Selection
.HorizontalAlignment = xlCenter
.Verticalalignment = xlBottom
.WrapText = False
.Orientation = 0
.AddIndent = False
.ShrinkToFit = False
.MergeCells = False
End With

' for WoorkBookID column

Range(Cells(1l, nVerPos + 5), Cells(nRowEnd, nVerPos + 5)).Select
Selection.Font.ColorIndex = 10

Selection.Font.Bold = True

Selection.ColumnWidth = 10

With Selection
.HorizontalAlignment = xlCenter
.Verticalalignment = xlBottom
WrapText = False
.Orientation = 0
.AddIndent = False
.ShrinkToFit = False
.MergeCells = False

End With

End Sub
Sub CreateTables()

' CreateTables Macro
' Macro recorded 03/22/2001 by Minghui Han

' Keyboard Shortcut: Ctrl+t

Dim nHorPos, nVerPos, nColumnStart, nRowStart As Integer
Dim numItems, numTables, numField As Integer '

Dim oldsheet, newsheet, strCellValue As String

Dim strFieldl(l To 500) As String

78

Dim strField2(l To 500) As String
Dim strField3 (1l To 500) As String
Dim strField4(1 To 500) As String
Dim strFieldS(1 To 500) As String
Dim strField6(1 To 500) As String
Dim strColunmWdLenl As Integer
Dim strColunmWdlen2 As Integer
Dim strColunmWdLen3 As Integer
Dim strColunmWdlen4 As Integer
Dim strColunmWdlen5 As Integer

'‘Get the Activesheet's range
Set rgnSheet = ActiveSheet.UsedRange

nHorPos 1
nVerPos 1
oldsheet = ActiveSheet.Name

For nRowStart = 1 To rgnSheet.Rows.Count
For nColumnStart = 1 To rgnSheet.Columns.Count

strCellValue = Cells(nRowStart, nColumnStart)

If InStr(l, strCellvalue, "{", vbTextCompare) = 1 Then
nHorPos = nRowStart 'find first row position of "{"
nVerPos = nColumnStart *find column position of "{"
strFieldl(l) = strCellvalue
GoTo firstTable

End If

Next nColumnStart
Next nRowStart

firstTable:

Sheets(oldsheet) .Select

strFieldl(l) = "Dataltem"

strField2(l) = "SetID"

strField3(l) = "MemberiID"

strField4(l) = "SheetID"

strField5(1) = "WorkbookID"

numIitems = 2 ‘start to get second row's value, and so on

For nRowStart = nHorPos To rgnSheet.Rows.Count ' - 1
strFieldl(numItems) = Cells(nRowStart, nVerPos)
strField2 (numItems) = Cells(nRowStart, nVerPos + 1)
strField3 (numItems) = Cells(nRowStart, nVerPos + 2)
strField4 (numItems) = Cells (nRowStart, nVerPos + 3)
strFieldS (numItems) = Cells(nRowStart, nVerPos + 4)

numItems = numltems 1

+

Next nRowStart
‘ready to add new sheet

‘new sheet name
newsheet = "{cItems}"
On Error Resume Next
Sheets (newsheet) .Select
On Error Resume Next

‘add new sheet

Sheets.add

ActiveSheet.Name = newsheet
Columns ("A:E") .ColumnWidth = 15
strColunmWdlenl = 1

ActiveSheet.Name = newsheet
ActiveWindow.Zoom = 75

For nRowStart = 1 To numItems ~ 1

Cells (nRowStart, 1) = strFieldl(nRowStart)
Cells(nRowStart, 2) = strField2(nRowStart)
Cells(nRowStart, 3) = strField3(nRowStart)
Cells(nRowStart, 4) = strField4 (nRowStart)
Cells (nRowStart, 5) = strFieldS(nRowStart)

If (strColunmWdlenl < Len(strFieldl(nRowStart))) Then
strColunmWdlLenl = Len(strFieldl (nRowStart))
Columns ("A:A") .ColummWidth = strColunmWdLenl

End If

If nRowStart = 1 Then

Cells(nRowStart, 1).Interior.ColorIndex = 8
Cells(nRowStart, 2).Interior.ColorIndex = 8
Cells(nRowStart, 3).Interior.ColorIndex = 8
Cells(nRowStart, 4).Interior.ColorIndex = 8
Cells(nRowStart, 5).Interior.ColorIndex = 8
Cells(nRowStart, 1).Borders.LineStyle = xlbDouble
Cells(nRowStart, 2).Borders.LineStyle = xlDouble
Cells(nRowStart, 3).Borders.LineStyle = x1Double
Cells (nRowStart, 4).Borders.lineStyle = xlDouble
Cells(nRowStart, 5).Borders.LineStyle = xlDouble

Else
Cells (nRowStart, 1).Font.ColorIndex = 32
Cells(nRowStart, 2).Font.ColorIndex = 3
Cells(nRowStart, 3).Font.ColorIndex = 3
Cells(nRowStart, 4).Font.ColorIndex = 3
Cells(nRowStart, 5).Font.Colorindex = 3
Cells(nRowStart, 1).Interior.ColorIndex = 2
Cells(nRowStart, 2).Interior.Color = RGB(255, 204, 153)
Cells (nRowStart, 3).Interior.Color = RGB(204, 255, 204)
Cells (nRowStart, 4).Interior.Color = RGB(200, 204, 253)
Cells (nRowStart, S).Interior.Color = RGB(100, 250, 200)
Cells(nRowStart, 1).Borders.LineStylie = xlDot
Cells(nRowStart, 2).Borders.LineStyle = x1Dot
Cells (nRowStart, 3).Borders.LineStyle = xlDot
Cells(nRowStart, 4).Borders.LineStyle = xlDot
Cells (nRowStart, 5).Borders.LineStyle = xlDot

End If

Next nRowStart

Range("Al:El1l").Select
Selection.Font.Bold = True
Cells(l, 1).Select

otherTable:

strColunmWdlLenl
strColunmWdLen2
strColunmwdLen3
strColunmWdl.en4
strColunmWdLenS

wnononon
(TR ER

'‘go back to 0ld sheet ready to read the each colum's value
Sheets (oldsheet) .Select

strFieldl(l) = "CtuplelD"”
strField2(1) = "Roles"
strField3 (1) = "SetID"
strField4 (1) = "MembexrID"
strField5(1l) = "SheetID"
strField6(1l) = *"WorkbookID"

‘new sheet name
newsheet = “{cTuples}*
On Erxor Resume Next
Sheets (newsheet) .Select
On Error Resume Next

‘add new sheet
Sheets.add
ActiveSheet .Name = newsheet

Columns ("A:F*") .ColumnWidth 10

ActiveSheet.Name = newsheet
ActiveWindow.Zoom = 75

‘add field name in the first row to the new sheet, and format them
For numField = 1 To 6

Cells(1l, numField).Interior.ColorIndex = 8
Cells(l, numField).Borders.LineStyle = xlDouble

If numField = 1 Then

Cells(l, numField) = strFieldl(l)
ElseIf numField = 2 Then

Cells(l, numField) = strField2(1)
ElseIf numField = 3 Then

Cells(1l, numField) = strField3(1l)
ElseIf numField = 4 Then

Cells(l, numField) = strField4(1)
ElseIf numField = 5 Then

Cells(l, numField) = strField5(1l)
ElseIf numField = 6 Then

Cells(l, numField) = strField6(1)
End If

Next numField
Sheets (oldsheet) .Select

‘For all other columns tables
For nColumnStart = 0 To nVerPos - 3

numltems = 2 *start to get second row's value, and so on
strField2 (numItems) = Cells (i, nColummStart)
strField3 (numItems) = Cells(l, nVerPos + 1)
strField4 (numIitems) = Cells(l, nVerPos + 2}
strFieldS (numItems) = Cells(l, nVexPos + 3)
strField6 (numItems) = Cells(l, nVerPos + 4)

numItems = pnumltems

+

1
If nColumnStart = 0 Then

strField2 (numItems - 1) = Cells(l, nVerPos + 5)
‘to get last colume's value i.e. N, M...
For nRowStart = 2 To rgnSheet.Rows.Count

If Not Cells(nRowStart, nVerPos + 4) = "* Then
strField2 (nunItems) = CStr(strField2 (numitems - 1))
CStr(Cells (nRowStart, nVerPos + 5))
strField3 (numItems) = CStr(strField3 (numitems - 1))
CStr(Cells(nRowStart, nVerPos + 1))

strField4 (numItems) = CStr(strField4 (numitems - 1))
CStr(Cells(nRowStart, nVerPos + 2))

strFieldsS (numItems) = CStr(strFieldS (numItems ~ 1))
CStr{Cells (nRowStart, nVerPos + 3))

strField6 (numItems) = CStr(strField6 (numitems ~ 1))

CStr(Cells (nRowStart, nVerPos + 4))

numItems = numItems + 1
End If

Next nRowStart

Else

‘to retrive the jMap notation value

'since the sheet has one more row for title, minus one to get real

nColumStart) = "" Then

= CStr(strField2 (numItens

CStr (stxrFields (numItems
CStr(strField4 (numItems

CStr (strFieldS (numiItems

rows
For nRowStart = 2 To rgnSheet.Rows.Count
If Not Cells(nRowStart,
strField2 (numItems)
CStr(Cells (nRowStart, nColumnStart))
strField3 (numItems) =
CStr(Cells (nRowStart, nVerPos + 1))
strFieldq (numItems) =
CStr(Cells (nRowStart, nVerPos + 2)})
strField5(numItems) =
CStr(Cells (nRowStart, nVerPos + 3))
strField6 (numItems) =

CStr(Cells (nRowStart, nVerPos + 4))

CStr (strField6 (numitems

numIitems = numitems + 1
End If
Next nRowStart
End If
‘ready to add new sheet
On Error Resume Next
Sheets (newsheet) .Select
'‘assign the value to new sheet
Cells(nColummStart + 2, 1) = CStr(nColumnStart)
Cells (nColumnStart + 2, 2) = strField2(numItems - 1)
Cells (nColummsStart + 2, 3) = strField3(numItems - 1)
Cells(nColumnStart + 2, 4) = strField4(numItems - 1)
Cells(nColumnStart + 2, 5) = strFieldS(numItems - 1)
Cells(nColumnStart + 2, 6) = strFieldé (numItems - 1)
'add field data in the new sheet, and format them
Cells (nColumnStart + 2, 1).Font.ColorIndex = 32
Cells{nColumnStart + 2, 2).Font.ColorIndex = 3
Cells (nColumnStart + 2, 3).Font.ColorIndex = 32
Cells (nColumnStart + 2, 4).Font.ColorIndex = 3
Cells(nColumnStart + 2, 5).Font.ColorIndex = 32
Cells (nColumnStart + 2, 6).Font.ColorIndex = 3
Cells (nColumnStart + 2, 1).Interior.ColorIndex = 2
Cells(nColumnStart + 2, 2).Interior.Color = RGB(255, 255,
Cells (nColumnStart + 2, 3).Interior.Color = RGB(204, 255,
Cells (nColumnStart + 2, 4).Interior.Color = RGB(255, 204,
Cells (nColumnStart + 2, 5).Interior.Color = RGB(240, 200,
Cells(nColumnStart + 2, 6).Interior.Color = RGB(220, 250,
Cells (nColumnStart + 2, 1).Borders.LineStyle = xlDot
Cells(nColumnStart + 2, 2).Borders.LineStyle = x1Dot
Cells(nColumnStart + 2, 3).Borders.LineStyle = xlDot
Cells(nColummStart + 2, 4).Borders.LineStyle = x1Dot
Cells (nColumnStart + 2, 5).Borders.LineStyle = xiDot
Cells (nColummStart + 2, 6).Borders.LineStyle = x1Dot

If (strColunmWdlenl < Len(strField2(numItems -
strColunmWdl.enl = Len(strField2 (numItems - 1))
Columns ("B:B") .ColumnWidth = strColunmWdlLenl

End If

1))) Then

- 1))

- 1))

- 1)

153)
204)
153)
223)
230)

82

If (strColunmWdLen2 < Len(strField3(numItems -~ 1))) Then
strColunmWdlLen2 = Len(strField3(numItems - 1))
Columns ("C:C*) .ColumWidth = strColunmWdLen2

End If

If (strColunmWdLen3 < Len(strField4 (numItems - 1))) Then
strColunmWdLen3 = Len(strField4 (numItems - 1))
Columns ("D:D") .ColumnWidth = strColunmWdLen3

End If

If (strColunmWdLend < Len(strFieldS(numItems - 1))) Then
strColunmWdlend = Len(strFieldS (numItems - 1))
Columns (*E:E") .ColumnWidth = strColunmWdlen4

End If

If (strColunmWdLenS < Len(strField6(numItems - 1))) Then
strColunmWdLenS = Len(stxField6 (numItems -~ 1))
Columns ("F:F*).ColumnWidth = strColunmWdLenS

End If

Range ("Al:F1") .Select
Selection.Font.Bold = True
Cells(1l, 1).Select

Sheets (oldsheet) .Select

Next nColumnStart

End Sub

Sudb RemoveTables()

' RemoveTables Macro

' Macro

recorded 03/22/2001 by Minghui Han

Dim Wks As Worksheet

For Each Wks In Worksheets

If Wks.type = x1lWorksheet Then
If Wks.Visible Then

If InStr(wWks.Name, "{") Or InStr(Wks.Name, "<") Then

Application.DisplayAlerts = False
Wks.Delete
Application.DisplayAlerts = True
End If
End If
End If

Next Wks

End Sub

A-3 Class Modules Source Code

The source code for Class Modules includes as following created class:

e AccessJMapBuilder
e Table

All source code in above Classes are listed as following:

83

A-3-1 AccessJMapBuilder

'Option Compare Database
Option Explicit

Private App As Excel.Application ‘pointer to excel application
Private Book As Excel.Workbook '‘pointer to excel workbook
Private Sheet As Excel.Worksheet ‘pointer to excel worksheet

Private SetTable As Table ‘pointer to table, holds the cordinates of the written
sets

Private Sub Class_Initialize()

'Purpose: create the workbook and sheet to work in
'BECAUSE: we cannot run build database on a new book

‘create application and werkbook, make pointer point to created objects
Set App = Workbooks.Application

Set Sheet = App.Sheets.Add

Sheet.Activate

*inputting first entry in the spreadsheet

'first entry is the {View} set

‘done explicitly because insert functions (later in class)
‘depend on this entry to determine where to insert new sets
Sheet.Cells(l, 1) = 0 ‘for 0 associations

Sheet.Cells(l, 2) = 0 ‘'for 0 set members
Sheet.Range("Al:B1").Select

App.Selection.Font.ColorIndex = 3 ‘change color to red

Sheet.Cells(l, 3) = "{View}"
Sheet.Range("Al:Cl") .Select
App.Selection.Font.Bold = True ‘make bold
App.Selection.ColumnWidth = 2 'column width

*create the table and insert the first row that we just wrote into the
spreadsheet

Set SetTable = New Table

SetTable.InsertRow "View", 1, 3, "V*
End Sub

Private Sub Class_Terminate()

‘Purpose: Quit the application and free all allocated space
'Arguments: Filename, full path: where to save workbook

‘free allocated resources
Set App = Nothing
Set Book = Nothing
Set Sheet = Nothing
Set SetTable = Nothing
End Sub

Public Sub NameSheet (Name As String)
‘Purpose: Assigns a name to the Active sheet

Dim CurPos As Integer
Dim StartPos As Integer

CurPos = Len (Name)

Do Until CurPos < 1
StartPos = InStr(CurPos, Name, "\")
If startPos <> 0 Then

84

Exit Do
End If
CurPos = CurPos - 1
Loop

Sheet.Name = Mid(Name, StartPos + 1)
Sheet.Name = "{" + Sheet.Name + "}*

ActiveSheet.Select
ActiveWindow.Zoom = 75

End Sub

Public Sub Save(Filename As String)
‘Purpose: save the file and close the book
'Arguments: Filename, full path: where to save workbook

Mid{Filename, Len{Filename) - 2) = "xls"
Book.SaveAs Filename

End Sub

Public Sub InsertSet(set_name As String, association As String)
‘Purpose: Insert a new set into the Jmap
‘Arguments: set_name, name of the set, not including curly brackets

If SetTable.Exists(set_name) = True Then
Exit Sub
End If

Dim row As Integer, Column As Integer
NewCell row, Column ‘get next available place

'write the set_name in the sheet and make it bold
Sheet.Cells(row, Columm) = "{" & set_name & *1}"
Sheet.Cells(row, Column).Select
App.Selection.Font.Bold = True

'insert a value of 0 next to the set, meaning 0 set members
‘then make bold and red

Sheet.Cells(row, Colum - 1) = 0

Sheet.Cells(row, Column - 1).Select
2App.Selection.Font.ColorIndex = 3

2App.Selection.Font.Bold = True

‘left of the number of set members, onsert another O meaning 0 associations
‘then again make bold and red

Sheet.Cells(row, Column ~ 2) = 0

Sheet.Cells(row, Column - 2}.Select

App.Selection.Font.ColorIndex = 3

2App.Selection.Font.Bold = True

'ypdate our table
SetTable.InsertRow set_name, row, Column, association

End Sub

Public Sub InsertSetMember(set_name As String, ByVal value As String)

85

'Purpose: Insert a new set member into the given set
‘Argquments: set_name, name of the set, not including curly brackets
‘ value, a string for the set member value

‘cannot insert into a non existant set

If SetTable.Exists(set_name) = False Then
Exit Sub

End If

'‘if set exists make sure this is not a duplicate entry
If FindSetMember (set_name, value) = True Then

Exit Sub
End If

Dim row As Integer, Column As Integer
SetTable.GetNamedIndexes set_name, row, Column ‘get coordinates of set

‘add a new row under the set name
Sheet.Cells(row + 1, Column).Select
App.Selection.EntireRow.Insert

'insert the value into the new row, 1 column to the right of the set
Sheet.Cells(row + 1, Column + 1) = value

‘insert value of 0 for the number of associations
'2 columns left of where we just put the set member
Sheet.Cells(xrow + 1, Column - 2) = 0
Sheet.Cells{(row + 1, Columm - 2).Select
App.Selection.Font.ColorIndex = 3
App.Selection.Font.Bold = False

‘update the counter for set members next to the set (add 1). it's 1 colum to
the left of the set
Sheet.Cells(row, Column -~ 1) = Sheet.Cells(row, Column - 1) + 1

‘update our table (we added a new row at row + 1)
SetTable.ShiftDown row + 1

End Sub

Public Function FindSetMember (set_name As String, ByvVal value As String, Optional
ret_row As Integer, Optional ret_col As Integer) As Boolean

‘Purpose: Checks if a set member is already part of a set, if yes returns the
index
'Arguments- set_name, name of the set, not including curly brackets

value, a string for the set member value

' value on error
FindSetMember = False

‘cannot search into a non existant set

If SetTable.Exists(set_name) = False Then
Exit Function

End If

'‘set exists, get coordinates of set
Dim row As Integer, Column As Integer
SetTable.GetNamedIndexes set_name, row, Column

'if we find the set return it's coordinates else return -1
Dim I As Integer

Dim limit As Integer

Dim set_member_name As String

limit = Sheet.Cells(row, Column - 1).value

I=0

86

For I = 0 To limit
set_member_name = Sheet.Cells(row + I, Colummn + 1)
1f StrComp (set_member_name, value) = 0 Then
ret_row = row + I
ret_col = Column + 1
FindSetMember = True
Exit Function
End If
Next I
End Function

Public Sub AddColumn()

‘Purpose: adds a column to the bigenning of the worksheet

Sheet.Cells(l, 1).Select
App.Selection.EntireColumn.Insert
App.Selection.ColumnWidth = 2 ‘'column width

‘populate the blank columns with the correct association headings

‘update the values in the table
SetTable.ShiftRight
End Sub

Private Sub NewCell (ByRef row As Integer, ByRef Column As Integer)

‘Purpose: find the next free space to insert a set
‘Arguments row, places the value of new row where to insert
column, places the value of the new column where to insert

'‘gets location of last set
SetTable.GetLastEntry row, Column

'add the number of set members for last set member
row = row + Sheet.Cells(row, Column - 1)

‘one more for a new row
row = row + 1

End Sub

Public Sub DoRowGrouping{Name As String)

'Purpose: Groups the rows under a set
‘Arguments: name is the name of the set to be grouped

Dim row As Integer, row2 As Integer, Column As Integer
SetTable.GetNamedIndexes Name, row, Column 'find coorxdinates of set

row2 = row + Sheet.Cells(row, Column - 1) ‘calculate the limit
Sheet.Range (Sheet.Cells(row + 1, Column), Sheet.Cells(row2, Column)).Select

App.Selection.Rows.Group °‘group
End Sub

Public Sub DoGroupSettings()

*Purpose: Edits the settings for the row groupings

87

Sheet.Outline.AutomaticStyles = False

Sheet.Outline.SummaryRow = xlAbove

Sheet.Outline.SummaryColumn = xlLeft

Sheet.Outline.Showlevels Rowlevels:=1
End Sub

Public Sub InsertAssociation(Name As String, ByVal Member As String, RelationType
As String, Name2 As String, ByVal Member2 As String, RelationTypeZ As String, View
As String)

‘Purpose: Adds an association between two set members

‘find the view part of it. exit if it dosen't exist

Dim row As Integer, col As Integer

If FindSetMember ("View", View, row, col) = False Then
Exit Sub

End If

‘extend the {View} header of the map
Dim row_h As Integer, col_h As Integer, a As String
SetTable.GetNamedIndexes "View", row_h, col_h, a

'if statement to avoid overwriting and over counting
If Sheet.Cells(row_h, 1) = "" Then

Sheet.Cells(row_h, 1) = a

Sheet.Cells(row_h, 1).Select

App.Selection.Font.Bold = True ‘'make bold

Sheet.Cells{row_h, col_h - 2) = Sheet.Cells(row_h, col_h - 2) + 1
End If

insert a "v for the set member of the {View}
If Sheet.Cells(xrow, 1) = "" Then
Sheet.Cells(row, 1) = "v"
Sheet.Cells(row, 1).Select
App.Selection.Font.Bold = False
'Sheet.Cells(row, 1).Interior.ColorIndex = 8

Sheet.Cells(row, col - 3) = Sheet.Cells(row, col - 3) + 1

End If

' First part of the association '

‘get the first part of the association and extend the header
SetTable.GetNamedIndexes Name, row_h, col_h, a

If Sheet.Cells(row_h, 1) = " Then

Sheet.Cells(row_h, 1) = a

Sheet.Cells(row_h, 1).Select

App.Selection.Font.Bold = True ‘make bold

Sheet.Cells(row_h, col_h - 2) = Sheet.Cells(row h, col h - 2} + 1
End If

'insert the actual association
FindSetMember Name, Member, row, col

*f£ind the correct column to add the association to
Dim I As Integer, col2 As Integer
col2 = 1
For I =1 To col -3
If Sheet.Cells(row, I) <> "" And I <> col - 3 Then

col2 = I
Exit For
End If

Next I
If Sheet.Cells(row, col2) = "" Then

Sheet.Cells(row, col2) = RelationType
Sheet.Cells (row, col2).Select

88

2App.Selection.Font.Bold = False
Sheet.Cells(row, col - 3) = Sheet.Cells(row, col - 3) + 1
End If

' Second part of the association —--------—rc-—-sc—- '

‘get the second part of the association and extend it's header
SetTable.GetNamedIndexes Name2, row_h, col_h, a

If Sheet.Cells(row_h, 1) = "* Then

Sheet.Cells(row_h, 1) = a

Sheet.Cells(row_h, 1).Select

App.Selection.Font.Bold = True 'make bold

Sheet.Cells(row_h, col_h - 2) = Sheet.Cells(xow_h, col h - 2) + 1
End If

‘insert the actual association
FindSetMember Name2, Member2, row, col

‘use col2 from first part of association
If Sheet.Cells(row, col2) = "" Then
Sheet.Cells(row, col2) = RelationType2
Sheet.Cells{row, col2).Select
2App.Selection.Font.Bold = False
‘increment the counter
Sheet.Cells(row, col - 3) = Sheet.Cells(row, col - 3) + 1
BEnd If
End Sub

A-3-2 Table

‘MADE the table object DYNAMIC

'‘Option Compare Database
Option Explicit

Private max As Integer ' maximum number of entries in the table
Private next_free As Integer 'index of next available place in table

Private Names() As String 'choose not to use variant for effency reasons
Private association() As String ‘'determiones the type of association
Private Indexes() As Integer ‘'stored [(row,column), (row,column)...]

Private Sub Class_Initialize()

*Purpose: constructor type method used to initilize table.

next_free = 0 'on creation index 0 is available
max = 20

'NOTE: indexed fxom 0 to n, (c++ style)
ReDim Preserve Names(max + 1) As String
ReDim Preserve association(max + 1) As String
ReDim Preserve Indexes(2, max + 1) As Integer
End Sub

'does nothing but if needed add destruction code here
Private Sub Class_Terminate()

End Sub

89

Public Sub InsertRow(Name As String, row As Integer, Column As Integer, a As

String)

‘Purpose: Inserts a row into our table, a row contains the name of a set and it's

coordinates

‘Arguments: name = name of set

' row = row index of set location

' column = column index of set location

If next_free = max Then
‘double the size of the array
max = max * 2

‘NOTE: indexed from 0 to n, (c++ style)
ReDim Preserve Names(max + 1) As String

ReDim Preserve association(max + 1) As String
ReDim Preserve Indexes(2, max + 1) As Integer

End If

‘insert the actual data

Names (next_free} = Name
association(next_£free) = a
Indexes (0, next_free) = row
Indexes(l, next_free) = Column
next_free = next_free + 1

End Sub

Public Function FindIndex(Name As String) As Integer

'Purpose: Gets the array index in the table of the given set name.

'Arguments: name = name of set

'Returns: an integer which is the index of the given set name or -1 if not found

FindIndex = -1 ‘return -1 if not found
Dim I As Integer
For I = 0 To max

If StrComp (Names(I), Name) = 0 Then

FindIndex = I 'means set name was found reset return to current index

End If
Next I
End Function

Public Function Exists(Name As String) As Boolean

‘Purpose: Checks if a set already exists
‘Arguments: name = name of set
'Returns: BOOL true if found false if not

Exists = False ‘'return false if not found
Dim I As Integer
For I = 0 To max

If StrComp(Names(I), Name) = 0 Then

Exists = True ‘means set name was found reset return true

Exit Function
End If
Next I
End Function

90

Public Function GetNamedIndexes(Name As String, row As Integer, Column As Integer,
Optional a As String)

‘Purpose: Takes the name of a set and places it's coordinates into the row and
column arguments

'Arguments: name = name of set
N row = argument to place found row wvalue

column = argument to place found column value
'Returns: 0 on success -1 on failure

Dim I As Integer
I = FindIndex(Name)
If I <> -1 Then
row = Indexes(0, I)
Column = Indexes(l, I)
a = association(I)
GetNamedIndexes = 0
Else
Debug.Print "set name not found"
GetNamedIndexes = -1
End If

End Function

Public Sub ShiftRight()

‘Purpose: increment all the column values by one used when we insert a column into
the spreadsheet

'Arguments:
'Returns:

Dim I As Integer
For I = 0 To max
Indexes(l, I) = Indexes(l, I) + 1
Next I
End Sub

Public Sub ShiftDown(row_index As Integer)

‘Purpose: shift all values under the given row

‘Arguments: row_index = the row in the spreadsheet where you insert a new row
' this forces all the entries in the table to be wrong

so must call ShiftDown to correct entries in the table

Dim I As Integer
For I = 0 To max
If Indexes(0, I) >= row_index Then
Indexes (0, I) = Indexes{(0, I) + 1
End If
Next I
End Sub

Public Sub GetLastEntry(ByRef row As Integer, ByRef Column As Integer)
'Purpose: puts the coordinates of the last set into the arguments

'Arguments: row = place the row index here
' column = place the columm index here

.

' Debug.Assert next_free <> 0

91

If next_free > 0 Then
row = Indexes(0, next_free - 1)
Column = Indexes{l, next_free - 1)
Else
Debug.Print “"the table is empty"
End If
End Sub

Public Function GetaAllEntries() As Collection
'Purpose: Returns a collection with the names of all the entries in the table

Dim I As Integer
Set GetAllEntries = New Collection
For I = 0 To max
GetAllEntries.add (Names(I))
Next I
End Function

92

